Replication fork collision with a DNA nick can generate a one-ended break, fostering genomic instability. The opposing fork's collision with the nick could form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells.
View Article and Find Full Text PDFCollision of a replication fork with a DNA nick is thought to generate a one-ended break, fostering genomic instability. Collision of the opposing converging fork with the nick could, in principle, form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells.
View Article and Find Full Text PDFis an established breast and ovarian tumor suppressor gene that encodes multiple protein products whose individual contributions to human cancer suppression are poorly understood. BRCA1-IRIS (also known as "IRIS"), an alternatively spliced product and a chromatin-bound replication and transcription regulator, is overexpressed in various primary human cancers, including breast cancer, lung cancer, acute myeloid leukemia, and certain other carcinomas. Its naturally occurring overexpression can promote the metastasis of patient-derived xenograft (PDX) cells and other human cancer cells in mouse models.
View Article and Find Full Text PDFAn abnormal differentiation state is common in BRCA1-deficient mammary epithelial cells, but the underlying mechanism is unclear. Here, we report a convergence between DNA repair and normal, cultured human mammary epithelial (HME) cell differentiation. Surprisingly, depleting BRCA1 or FANCD2 (Fanconi anemia [FA] proteins) or BRG1, a mSWI/SNF subunit, caused HME cells to undergo spontaneous epithelial-to-mesenchymal transition (EMT) and aberrant differentiation.
View Article and Find Full Text PDFPosttranslational modifications mediate important regulatory functions in biology. The acetylation of the p53 transcription factor, for example, promotes transcriptional activation of target genes including p21. Here we show that the acetylation of two lysine residues in p53 promotes recruitment of the TFIID subunit TAF1 to the p21 promoter through its bromodomains.
View Article and Find Full Text PDFEarlier studies have shown that PTEN regulated p53 protein stability both in a phosphatase-dependent manner through antagonizing Akt-Mdm2 pathway and in a phosphatase-independent manner through interacting with p53. In this study, we report that PTEN forms a complex with p300 in the nucleus and plays a role in maintenance of high p53 acetylation in response to DNA damage. Furthermore, p300 is required for nuclear PTEN-regulated cell cycle arrest.
View Article and Find Full Text PDFProtein Expr Purif
April 2005
As cells persist in their environment, they are exposed to harmful agents that can damage their genomic DNA. When DNA becomes damaged, p53, a tumor suppressor, is stabilized and acts as a transcription factor to cause either cell cycle arrest or apoptosis. Strict p53 regulatory mechanisms have been well characterized relative to phosphorylation and dephosphorylation, but acetylation of p53 in response to DNA damage has also been shown to participate in p53 function.
View Article and Find Full Text PDFAs a transcription factor, p53 recognizes a specific consensus DNA sequence and activates the expression of the target genes involved in either growth arrest or apoptosis. Despite our wealth of knowledge on the genes that are targeted by p53 in growth arrest and apoptosis, relatively little is known about the promoter specificity triggered by p53 in these processes. Here we show that interaction with c-Abl stabilized p53 tetrameric conformation, and as a consequence c-Abl stimulated p53 DNA binding only when all quarter binding sites (a perfect binding sequence) on p53-responsive promoters were present.
View Article and Find Full Text PDFThe largest subunit of TFIID, TAF1, possesses an intrinsic protein kinase activity and is important for cell G1 progression and apoptosis. Since p53 functions by inducing cell G1 arrest and apoptosis, we investigated the link between TAF1 and p53. We found that TAF1 induces G1 progression in a p53-dependent manner.
View Article and Find Full Text PDFWe show in this study that PTEN regulates p53 protein levels and transcriptional activity through both phosphatase-dependent and -independent mechanisms. The onset of tumor development in p53(+/-);Pten(+/-) mice is similar to p53(-/-) animals, and p53 protein levels are dramatically reduced in Pten(-/-) cells and tissues. Reintroducing wild-type or phosphatase-dead PTEN mutants leads to a significant increase in p53 stability.
View Article and Find Full Text PDF