Infect Control Hosp Epidemiol
June 2019
Background: Determining infectious cross-transmission events in healthcare settings involves manual surveillance of case clusters by infection control personnel, followed by strain typing of clinical/environmental isolates suspected in said clusters. Recent advances in genomic sequencing and cloud computing now allow for the rapid molecular typing of infecting isolates.
Objective: To facilitate rapid recognition of transmission clusters, we aimed to assess infection control surveillance using whole-genome sequencing (WGS) of microbial pathogens to identify cross-transmission events for epidemiologic review.
We recently identified a novel vancomycin-resistant Enterococcus faecium (VREfm) clone ST736 with reduced daptomycin susceptibility. The objectives of this study were to assess the population dynamics of local VREfm strains and genetic alterations predisposing to daptomycin resistance in VREfm ST736 strains. Multilocus sequence typing and single nucleotide variant data were derived from whole-genome sequencing of 250 E.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2017
Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression mainly through translational repression of target mRNA molecules. More than 2700 human miRNAs have been identified and some are known to be associated with disease phenotypes and to display tissue-specific patterns of expression.
Methods: We used high-throughput small RNA sequencing to discover novel miRNAs in 93 human post-mortem prefrontal cortex samples from individuals with Huntington's disease (n = 28) or Parkinson's disease (n = 29) and controls without neurological impairment (n = 36).
Objective: The goal of this study was to compare the microRNA (miRNA) profile of Parkinson's disease (PD) frontal cortex with normal control brain, allowing for the identification of PD specific signatures as well as study the disease-related phenotypes of onset age and dementia.
Methods: Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was employed to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction.
Huntington's Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing.
View Article and Find Full Text PDFBackground: Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood.
Objective: This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples.
Background: MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington's disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD.
Methods: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 HD gene positive, and 36 control brains.
Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value<0.
View Article and Find Full Text PDF