Close scrutiny of (Goodeniaceae) and allied genera in the 'Core Goodeniaceae' over recent years has clarified our understanding of this captivating group. While expanded sampling, sequencing of multiple regions, and a genome skimming reinforced backbone clearly supported as monophyletic and distinct from and , there appears to be no synapomorphic characters that uniquely characterise this morphologically diverse clade. Within , there is strong support from nuclear, chloroplast and mitochondrial data for three major clades (Goodenia Clades A, B and C) and various subclades, which lead to earlier suggestions for the possible recognition of these as distinct genera.
View Article and Find Full Text PDFGoodeniaceae is a primarily Australian flowering plant family with a complex taxonomy and evolutionary history. Previous phylogenetic analyses have successfully resolved the backbone topology of the largest clade in the family, Goodenia s.l.
View Article and Find Full Text PDFPremise Of The Study: The use of genome skimming allows systematists to quickly generate large data sets, particularly of sequences in high abundance (e.g., plastomes); however, researchers may be overlooking data in low abundance that could be used for phylogenetic or evo-devo studies.
View Article and Find Full Text PDFCore Goodeniaceae is a clade of ~330 species primarily distributed in Australia. Considerable variation in flower morphology exists within this group and we aim to use geometric morphometrics to characterize this variation across the two major subclades: Scaevola sensu lato (s.l.
View Article and Find Full Text PDFThough considerable progress has been made in inferring phylogenetic relationships of many plant lineages, deep unresolved nodes remain a common problem that can impact downstream efforts, including taxonomic decision-making and character reconstruction. The Core Goodeniaceae is a group affected by this issue: data from the plastid regions trnL-trnF and matK have been insufficient to generate adequate support at key nodes along the backbone of the phylogeny. We performed genome skimming for 24 taxa representing major clades within Core Goodeniaceae.
View Article and Find Full Text PDFPremise Of The Study: The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution.
Methods: We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses.