Publications by authors named "Andrew Fryer"

Trauma and emergency care is a national priority in Uganda due to the high burden of injury, impacting a primarily young and rural population. With a significant gap in qualified emergency medicine professionals, a need exists to rapidly upskill the current health workforce and to strengthen access to learning for non-specialist emergency care providers nationally. This review was completed in partnership with the Ugandan Ministry of Health and a consortium of UK partners to support national emergency workforce capacity building in Uganda and East Africa.

View Article and Find Full Text PDF

Aggrecanases, particularly aggrecanase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5), are believed to be key enzymes involved in the articular cartilage breakdown that leads to osteoarthritis. Thus, aggrecanases are considered to be viable drug targets for the treatment of this debilitating disease. A series of (1S,2R,3R)-2,3-dimethyl-2-phenyl-1-sulfamidocyclopropanecarboxylates was discovered to be potent, highly selective, and orally bioavailable aggrecanase inhibitors.

View Article and Find Full Text PDF

A series of 1-sulfonylaminocyclopropanecarboxylates was synthesized as ADAMTS-5 (Aggrecanase-2) inhibitors. After an intensive investigation of the central cyclopropane core including its absolute stereochemistry and substituents, we found compound 22 with an Agg-2 IC50=7.4 nM, the most potent ADAMTS-5 inhibitor reported so far.

View Article and Find Full Text PDF

A series of N-substituted sulfonylamino-alkanecarboxylate ADAMTS-5 (Aggrecanase-2) inhibitors has been synthesized and the in vitro enzyme SAR is discussed. This report is the first example of carboxylate-based ADAMTS-5 inhibitors which show strong potency of IC(50)<0.1muM with excellent selectivity over MMP-1 and TACE.

View Article and Find Full Text PDF

[reaction: see text] The preparation and synthetic applications of a novel resin-bound isonitrile are described. The resin is an example of a novel convertible isonitrile that can be utilized in the Ugi multicomponent reaction. Base-activation of the resin-bound Ugi product results in cleavage via formation of a N-acyloxazolidone that is then trapped as a carboxylic acid ester.

View Article and Find Full Text PDF