Publications by authors named "Andrew Fowlie"

Several pulsar timing array collaborations recently reported evidence of a stochastic gravitational wave background (SGWB) at nHz frequencies. While the SGWB could originate from the merger of supermassive black holes, it could be a signature of new physics near the 100 MeV scale. Supercooled first-order phase transitions (FOPTs) that end at the 100 MeV scale are intriguing explanations, because they could connect the nHz signal to new physics at the electroweak scale or beyond.

View Article and Find Full Text PDF

There are now two single measurements of precision observables that have major anomalies in the Standard Model: the recent CDF measurement of the W mass shows a 7σ deviation and the Muon g - 2 experiment at FNAL confirmed a long-standing anomaly, implying a 4.2σ deviation. Doubts regarding new physics interpretations of these anomalies could stem from uncertainties in the common hadronic contributions.

View Article and Find Full Text PDF

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters.

View Article and Find Full Text PDF

We propose a novel method for computing p-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as log^{2}1/p, which compares favorably to the 1/p scaling for Monte Carlo (MC) simulations. For significances greater than about 4σ in both a toy problem and a simplified resonance search, we show that NS requires orders of magnitude fewer simulations than ordinary MC estimates.

View Article and Find Full Text PDF

We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison.

View Article and Find Full Text PDF

Objectives: Clinical resistance to the currently recommended extended-spectrum cephalosporins (ESCs), the last remaining options for empirical antimicrobial monotherapy of gonorrhoea globally, has been reported. New antimicrobials are essential to avoid the emergence of untreatable gonorrhoea. We have investigated the in vitro activity of a novel dual bacterial topoisomerase inhibitor of the ATPase activities of GyrB and ParE (Vertex aminobenzimidazole VT12-008911), compared with antimicrobials currently or previously recommended for gonorrhoea treatment.

View Article and Find Full Text PDF