Publications by authors named "Andrew Flaus"

Article Synopsis
  • Enolase is an important enzyme in our bodies that helps convert energy during processes like glycolysis and gluconeogenesis.
  • Some types of parasites and bacteria have a special kind of enolase that helps them stick to host tissues, making it easier for them to cause infections.
  • Researchers are studying enolase from the Fasciola hepatica parasite, which could help us understand how it invades its host and possibly lead to better treatments for the diseases it causes.
View Article and Find Full Text PDF

Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs.

View Article and Find Full Text PDF

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in , a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences.

View Article and Find Full Text PDF

Exploratory analysis of cancer consortia data curated by the cBioPortal repository typically requires advanced programming skills and expertise to identify novel genomic prognostic markers that have the potential for both diagnostic and therapeutic exploitation. We developed GNOSIS (GeNomics explOrer using StatistIcal and Survival analysis in R), an R Shiny App incorporating a range of R packages enabling users to efficiently explore and visualise such clinical and genomic data. GNOSIS provides an intuitive graphical user interface and multiple tab panels supporting a range of functionalities, including data upload and initial exploration, data recoding and subsetting, data visualisations, statistical analysis, mutation analysis and, in particular, survival analysis to identify prognostic markers.

View Article and Find Full Text PDF

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed.

View Article and Find Full Text PDF

Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer related death among women. Breast cancers are generally diagnosed and treated based on clinical and histopathological features, along with subtype classification determined by the Prosigna Breast Cancer Prognostic Gene Signature Assay (also known as PAM50). Currently the copy number alteration (CNA) landscape of the tumour is not considered.

View Article and Find Full Text PDF

Recent studies have highlighted the potential for missense mutations in histones to act as oncogenic drivers, leading to the term 'oncohistones'. While histone proteins are highly conserved, they are encoded by multigene families. There is heterogeneity among these genes at the level of the underlying sequence, the amino acid composition of the encoded histone isoform, and the expression levels.

View Article and Find Full Text PDF
Article Synopsis
  • - Damage-induced long non-coding RNAs (dilncRNA) are vital for forming DNA-damage-response (DDR) foci at sites of DNA double-strand breaks (DSBs) by facilitating the assembly of essential transcription machinery.
  • - Key components for DDR focus formation include RNA polymerase II, MED1, and CDK9, and when these are missing or inactive, it leads to fewer DDR foci in both living organisms and laboratory settings.
  • - dilncRNAs promote the clustering of DDR proteins, like 53BP1, into foci that display characteristics of liquid-liquid phase separation, suggesting that the production of these RNAs enhances the organization and function of DDR components.
View Article and Find Full Text PDF

A developmental program affecting human face shape is shown by Greenberg et al. (2019) to hinge on the ability to distinguish a single methyl group between two histone variant isoforms and the action of the chromatin-remodeling enzyme SRCAP. This challenges researchers to link atomic structure to a morphological defect.

View Article and Find Full Text PDF

Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown.

View Article and Find Full Text PDF

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation.

View Article and Find Full Text PDF

The cell contains highly dynamic structures exploiting physical principles of self-organisation at the mesoscale (100 nm to 10 μm). Examples include non-membrane bound cytoplasmic bodies, cytoskeleton-based motor networks and multi-scale chromatin organisation. The challenges of mesoscale self-organisation were discussed at a CECAM workshop in July 2014.

View Article and Find Full Text PDF

Chromatin remodelling is the ATP-dependent change in nucleosome organisation driven by Snf2 family ATPases. The biochemistry of this process depends on the behaviours of ATP-dependent motor proteins and their dynamic nucleosome substrates, which brings significant technical and conceptual challenges. Steady progress has been made in characterising the polypeptides of which these enzymes are comprised.

View Article and Find Full Text PDF

Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair.

View Article and Find Full Text PDF

Nucleosomes are the fundamental subunits of eukaryotic chromatin. They are not static entities, but can undergo a number of dynamic transitions, including spontaneous repositioning along DNA. As nucleosomes are spaced close together within genomes, it is likely that on occasion they approach each other and may even collide.

View Article and Find Full Text PDF

Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes.

View Article and Find Full Text PDF

Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes.

View Article and Find Full Text PDF

Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA-protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA.

View Article and Find Full Text PDF

The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks.

View Article and Find Full Text PDF

The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members.

View Article and Find Full Text PDF

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage.

View Article and Find Full Text PDF

ISWI proteins form the catalytic core of a subset of ATP-dependent chromatin remodeling activities in eukaryotes from yeast to man. Many of these complexes have been found to reposition nucleosomes but with different directionalities. We find that the yeast Isw1a, Isw2, and Chd1 enzymes preferentially move nucleosomes toward more central locations on short DNA fragments whereas Isw1b does not.

View Article and Find Full Text PDF

ATP-dependent chromatin remodelling enzymes act to alter chromatin structure during gene regulation. Studies of the ATPase motors that drive these enzymes support the notion that they function as ATP-dependent DNA translocases with limited processivity. The action of these enzymes on nucleosomes results in the alteration of nucleosome positioning and structure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionet9q5gfdil0l5cpn764q9torf16eego2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once