Publications by authors named "Andrew Feeney"

Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated.

View Article and Find Full Text PDF

Acoustic metamaterials are growing in popularity for sound applications including noise control. Despite this, there remain significant challenges associated with the fabrication of these materials for the sub-100 Hz regime, because acoustic metamaterials for such frequencies typically require sub-mm scale features to control sound waves. Advances in additive manufacturing technologies have provided practical methods for rapid fabrication of acoustic metamaterials.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are an emerging class of ionic liquids that offer a solution to reclaiming technology critical metals (TCMs) from electronic waste, with potential for improved life cycle analysis. The high viscosities typical of DESs, however, impose mass transport limitations such that passive TCM removal generally requires immersion over extended durations, in some cases in the order of hours. It is postulated that, through the targeted application of power ultrasound, delamination of key structures in electronic components immersed in DESs can be significantly accelerated, thereby enabling rapid recovery of TCMs.

View Article and Find Full Text PDF

Across power ultrasonics and sensing, piezoelectric ultrasonic transducers commonly experience degradation in mechanical, electrical, and dynamic performance due to the relatively high sensitivity of piezoelectric materials to changes in temperature. These changes, arising for example through high excitation voltages or environmental conditions, can lead to nonlinear dynamic behaviours which compromise device performance. To overcome this, the excitation signal to the piezoelectric material is often pulsed, mitigating the influence of temperature rises.

View Article and Find Full Text PDF

Acoustic metamaterials are large-scale materials with small-scale structures. These structures allow for unusual interaction with propagating sound and endow the large-scale material with exceptional acoustic properties not found in normal materials. However, their multi-scale nature means that the manufacture of these materials is not trivial, often requiring micron-scale resolution over centimetre length scales.

View Article and Find Full Text PDF

Accurate average flow velocity determination is essential for flow measurement in many industries, including automotive, chemical, and oil and gas. The ultrasonic transit-time method is common for average flow velocity measurement, but current limitations restrict measurement accuracy, including fluid dynamic effects from unavoidable phenomena such as turbulence, swirls or vortices, and systematic flow meter errors in calibration or configuration. A new spatial averaging method is proposed, based on flexural ultrasonic array transducer technology, to improve measurement accuracy and reduce the uncertainty of the measurement results.

View Article and Find Full Text PDF

The flexural ultrasonic transducer comprises a piezoelectric ceramic disc bonded to a membrane. The vibrations of the piezoelectric ceramic disc induce flexural modes in the membrane, producing ultrasound waves. The transducer is principally utilized for proximity or flow measurement, designed for operation at atmospheric pressure conditions.

View Article and Find Full Text PDF

The ability to design tuned ultrasonic devices that can be operated in the same mode at two different frequencies has the potential to benefit a range of applications, such as surgical cutting procedures where the penetration through soft then hard tissues could be enhanced by switching the operating frequency. The cymbal transducer has recently been adapted to form a prototype ultrasonic surgical cutting device that operates at a single frequency. In this paper, two different methods of configuring a dual-resonance cymbal transducer are detailed.

View Article and Find Full Text PDF

Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency.

View Article and Find Full Text PDF

It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling.

View Article and Find Full Text PDF

An ultrasonic orthopaedic surgical device is presented, where the ultrasonic actuation relies on a modification of the classical cymbal transducer. All current devices consist of a Langevin ultrasonic transducer with a tuned cutting blade attached, where resonance is required to provide sufficient vibrational amplitude to cut bone. However, this requirement restricts the geometry and offers little opportunity to propose miniaturised devices or complex blades.

View Article and Find Full Text PDF

Cymbal flextensional transducers have principally been adopted for sensing and actuation and their performance in higher power applications has only recently been investigated. Nitinol is a shape-memory alloy (SMA) with excellent strain recovery, durability, corrosion resistance, and fatigue strength. Although it has been incorporated in many applications, the implementation of nitinol, or any of the SMAs, in power ultrasonic applications is limited.

View Article and Find Full Text PDF