Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned a neuroprosthetic/brain-machine interface (BMI) task.
View Article and Find Full Text PDFEpithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs).
View Article and Find Full Text PDFThe motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood.
View Article and Find Full Text PDF