Publications by authors named "Andrew F Thompson"

Models and proxy data suggest multi-centennial nutrient reorganization and biological productivity changes under sustained climate warming. These changes have traditionally been attributed to processes in the Southern Ocean. Here we instead show that transient overturning circulation adjustments, associated with changes in the Atlantic Meridional Overturning Circulation (AMOC), dominate the global nutrient reorganization on centennial timescales.

View Article and Find Full Text PDF

Interactions between the upper ocean and air-ice-ocean fluxes in the Southern Ocean play a critical role in global climate by impacting the overturning circulation and oceanic heat and carbon uptake. Remote and challenging conditions have led to sparse observational coverage, while ongoing field programmes often fail to collect sufficient information in the right place or at the time-space scales required to constrain the variability occurring in the coupled ocean-atmosphere system. Only within the last 10 years have we been able to directly observe and assess the role of the fine-scale ocean and rapidly evolving atmospheric marine boundary layer on the upper limb of the Southern Ocean's overturning circulation.

View Article and Find Full Text PDF

The Bellingshausen Sea hosts heat transport onto the continental shelf, potentially enhancing ice shelf basal melt. Here, we use the GLORYS12V1 1993-2018 reanalysis to identify physical processes that set seasonal and interannual variability of water mass properties in the Eltanin and Latady Bays on the southern Bellingshausen Sea continental shelf. Annual means of potential temperature from 300 m to the seabed reveal interannual variability and allow separation into warm and cold regimes.

View Article and Find Full Text PDF

The observed acceleration of ice shelf basal melt rates throughout West Antarctica could destabilize continental ice sheets and markedly increase global sea level. Explanations for decadal-scale melt intensification have focused on processes local to shelf seas surrounding the ice shelves. A suite of process-based model experiments, guided by CMIP6 forcing scenarios, show that freshwater forcing from the Antarctic Peninsula, propagated between marginal seas by a coastal boundary current, causes enhanced melting throughout West Antarctica.

View Article and Find Full Text PDF

Arctic sea ice extent continues to decline at an unprecedented rate that is commonly underestimated by climate projection models. This disagreement may imply biases in the representation of processes that bring heat to the sea ice in these models. Here we reveal interactions between ocean-ice heat fluxes, sea ice cover, and upper-ocean eddies that constitute a positive feedback missing in climate models.

View Article and Find Full Text PDF
Article Synopsis
  • Mesoscale eddies, which affect global ocean circulation, create noticeable changes in sea surface height (SSH) detectable by satellites, but tracking their heat transport has been challenging due to the need for comprehensive ocean data.
  • This study shows that SSH data can be effectively used to estimate eddy heat fluxes through a deep Convolutional Neural Network (CNN), which learned from simulations of baroclinic turbulence.
  • The CNN outperformed traditional methods, indicating that it could be a valuable tool for real-time monitoring of eddy heat fluxes with satellite altimetry and remote sensing techniques.
View Article and Find Full Text PDF

The Beaufort Gyre freshwater content has increased since the 1990s, potentially stabilizing in recent years. The mechanisms proposed to explain the stabilization involve either mesoscale eddy activity that opposes Ekman pumping or the reduction of Ekman pumping due to reduced sea ice-ocean surface stress. However, the relative importance of these mechanisms is unclear.

View Article and Find Full Text PDF

Estimates of the kinetic energy transfer from the wind to the ocean are often limited by the spatial and temporal resolution of surface currents and surface winds. Here we examine the wind work in a pair of global, very high-resolution (1/48° and 1/24°) MIT general circulation model simulations in Latitude-Longitude-polar Cap (LLC) configuration that provide hourly output at spatial resolutions of a few kilometers and include tidal forcing. A cospectrum analysis of wind stress and ocean surface currents shows positive contribution at large scales (>300 km) and near-inertial frequency and negative contribution from mesoscales, tidal frequencies, and internal gravity waves.

View Article and Find Full Text PDF

Recent studies highlight that oceanic motions associated with horizontal scales smaller than 50 km, defined here as submesoscales, lead to anomalous vertical heat fluxes from colder to warmer waters. This unique transport property is not captured in climate models that have insufficient resolution to simulate these submesoscale dynamics. Here, we use an ocean model with an unprecedented resolution that, for the first time, globally resolves submesoscale heat transport.

View Article and Find Full Text PDF

This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths.

View Article and Find Full Text PDF

An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching.

View Article and Find Full Text PDF

Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope.

View Article and Find Full Text PDF

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region.

View Article and Find Full Text PDF

In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica.

View Article and Find Full Text PDF

Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont8e89sdblip7fn2rt8gdeam4jqs950p6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once