Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic C/N markers concurrently.
View Article and Find Full Text PDFTerrestrial and aquatic ecosystems have specific carbon fingerprints and sequestration potential, due to the intrinsic properties of the organic matter (OM), mineral content, environmental conditions, and microbial community composition and functions. A small variation in the OM pool can imbalance the carbon dynamics that ultimately affect the climate and functionality of each ecosystem, at regional and global scales. Here, we review the factors that continuously contribute to carbon stability and lability, with particular attention to the OM formation and nature, as well as the microbial activities that drive OM aggregation, degradation and eventually greenhouse gas emissions.
View Article and Find Full Text PDFAn increase of nitrite in the domestic-strength range is generally recognized to stimulate nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). It was found in this study, however, that N2O emission from a mainstream nitritation system (cyclic nitrite = 25-45 mg of N/L) that was established by free nitrous acid (FNA)-based sludge treatment was not higher but much lower than that from the initial nitrifying system with full conversion of NH4(+)-N to NO3(-)-N. Under dissolved oxygen (DO) levels of 2.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2014
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase.
View Article and Find Full Text PDF