The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific.
View Article and Find Full Text PDFThe development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden.
View Article and Find Full Text PDFA wealth of clustering algorithms are available for single-cell RNA sequencing (scRNA-seq) data to enable the identification of functionally distinct subpopulations that each possess a different pattern of gene expression activity. Implementation of these methods requires a choice of resolution parameter to determine the number of clusters, and critical judgment from the researchers is required to determine the desired resolution. This supervised process takes significant time and effort.
View Article and Find Full Text PDFWe performed RNA sequencing on 40,000 cells to create a high-resolution single-cell gene expression atlas of developing human cortex, providing the first single-cell characterization of previously uncharacterized cell types, including human subplate neurons, comparisons with bulk tissue, and systematic analyses of technical factors. These data permit deconvolution of regulatory networks connecting regulatory elements and transcriptional drivers to single-cell gene expression programs, significantly extending our understanding of human neurogenesis, cortical evolution, and the cellular basis of neuropsychiatric disease. We tie cell-cycle progression with early cell fate decisions during neurogenesis, demonstrating that differentiation occurs on a transcriptomic continuum; rather than only expressing a few transcription factors that drive cell fates, differentiating cells express broad, mixed cell-type transcriptomes before telophase.
View Article and Find Full Text PDFA 77-year-old retired engineer presented to accident and emergency with deteriorating shortness of breath that had been troubling him for several months. At that time, he was being investigated by a chest physician who had identified bilateral diaphragmatic paralysis on ultrasound and was awaiting further imaging. Clinical assessment and nerve conduction studies on this admission were compatible with a diagnosis of motor neuron disease but specialist neurology input recommended an MRI to rule out cord pathology.
View Article and Find Full Text PDF