3D printing is transforming traditional processing methods for applications ranging from tissue engineering to optics. To fulfill its maximum potential, 3D printing requires a robust technique for producing structures with precise three-dimensional (x, y and z) control of mechanical properties. Previous efforts to realize such spatial control of modulus within 3D printed parts have largely focused on low-resolution (mm to cm scale) multi-material processes and grayscale approaches that spatially vary the modulus in the x-y plane and energy dose-based ( = ) models that do not account for the resin's sub-linear response to irradiation intensity.
View Article and Find Full Text PDF