The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.
View Article and Find Full Text PDFBackground: DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral cancer across different geographical locations is yet to be investigated.
View Article and Find Full Text PDFThe expression dysregulation of microRNAs (miRNA) has been widely reported during cancer development, however, the underling mechanism remains largely unanswered. In the present work, we performed a systematic integrative study for genome-wide DNA methylation, copy number variation and miRNA expression data to identify mechanisms underlying miRNA dysregulation in lower grade glioma. We identify 719 miRNAs whose expression was associated with alterations of copy number variation or promoter methylation.
View Article and Find Full Text PDFDespite recent biotechnological breakthroughs, cancer risk prediction remains a formidable computational and experimental challenge. Addressing it is critical in order to improve prevention, early detection and survival rates. Here, I briefly summarize some key emerging theoretical and computational challenges as well as recent computational advances that promise to help realize the goals of cancer-risk prediction.
View Article and Find Full Text PDFBackground: Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI has not been well-explored, especially in East Asian populations.
View Article and Find Full Text PDFThe cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC.
View Article and Find Full Text PDFDNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes.
View Article and Find Full Text PDFMethylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height.
View Article and Find Full Text PDFEpigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers.
View Article and Find Full Text PDFDeciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding.
View Article and Find Full Text PDFBackground: Changes in cell-type composition of tissues are associated with a wide range of diseases and environmental risk factors and may be causally implicated in disease development and progression. However, these shifts in cell-type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell-type abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their power to detect shifts in tissue composition.
View Article and Find Full Text PDFVariations of cell-type proportions within tissues could be informative of biological aging and disease risk. Single-cell RNA-sequencing offers the opportunity to detect such differential abundance patterns, yet this task can be statistically challenging due to the noise in single-cell data, inter-sample variability and because such patterns are often of small effect size. Here we present a differential abundance testing paradigm called ELVAR that uses cell attribute aware clustering when inferring differentially enriched communities within the single-cell manifold.
View Article and Find Full Text PDFTranscription factors (TFs) control cell identity and function. How their activity is altered during healthy aging is critical for an improved understanding of aging and disease risk, yet relatively little is known about such changes at cell-type resolution. Here we present and validate a TF activity estimation method for single cells from the hematopoietic system that is based on TF regulons, and apply it to a mouse single-cell RNA-sequencing atlas, to infer age-associated differentiation activity changes in the immune cells of different organs.
View Article and Find Full Text PDFDNA methylation data generated from bulk tissue represents a mixture of many different cell types. Variation in the cell-type composition of tissues is thus a major confounder when inferring differential DNA methylation. Due to the high cost of single-cell methylome sequencing, computational methods that can dissect the cell-type heterogeneity of bulk DNA methylomes offer an efficient and cost-effective solution, especially in the context of large-scale EWAS.
View Article and Find Full Text PDFCell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entropy of expression covariation patterns and which is applicable to static and dynamically changing cell populations.
View Article and Find Full Text PDFDNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
June 2022
MicroRNAs (miRNAs) are important regulators in gene expression. The dysregulation of miRNA expression is widely reported in the transformation from physiological to pathological states of cells. A large number of differentially expressed miRNAs (DEMs) have been identified in various human cancers by using high-throughput technologies, such as microarray and miRNA-seq.
View Article and Find Full Text PDFUnlabelled: Evidence points toward the differentiation state of cells as a marker of cancer risk and progression. Measuring the differentiation state of single cells in a preneoplastic population could thus enable novel strategies for early detection and risk prediction. Recent maps of somatic mutagenesis in normal tissues from young healthy individuals have revealed cancer driver mutations, indicating that these do not correlate well with differentiation state and that other molecular events also contribute to cancer development.
View Article and Find Full Text PDFBulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types.
View Article and Find Full Text PDFClin Epigenetics
February 2022
Most studies aiming to identify epigenetic biomarkers do so from complex tissues that are composed of many different cell-types. By definition, these cell-types vary substantially in terms of their epigenetic profiles. This cell-type specific variation among healthy cells is completely independent of the variation associated with disease, yet it dominates the epigenetic variability landscape.
View Article and Find Full Text PDFSaliva and buccal samples are popular for epigenome wide association studies (EWAS) due to their ease of collection compared and their ability to sample a different cell lineage compared to blood. As these samples contain a mix of white blood cells and buccal epithelial cells that can vary within a population, this cellular heterogeneity may confound EWAS. This has been addressed by including cellular heterogeneity obtained through cytology at the time of collection or by using cellular deconvolution algorithms built on epigenetic data from specific cell types.
View Article and Find Full Text PDFBackground: Disruption of DNA methylation (DNAm) is one of the key signatures of cancer, however, detailed mechanisms that alter the DNA methylome in cancer remain to be elucidated.
Methods: Here we present a novel integrative analysis framework, called MeLncTRN (Methylation mediated LncRNA Transcriptional Regulatory Network), that integrates genome-wide transcriptome, DNA methylome and copy number variation profiles, to systematically identify the epigenetically-driven lncRNA-gene regulation circuits across 18 cancer types.
Finding: We show that a significant fraction of the aberrant DNAm and gene expression landscape in cancer is associated with long noncoding RNAs (lncRNAs).
Single-cell omics is transforming our understanding of cell biology and disease, yet the systems-level analysis and interpretation of single-cell data faces many challenges. In this Perspective, we describe the impact that fundamental concepts from statistical mechanics, notably entropy, stochastic processes and critical phenomena, are having on single-cell data analysis. We further advocate the need for more bottom-up modelling of single-cell data and to embrace a statistical mechanics analysis paradigm to help attain a deeper understanding of single-cell systems biology.
View Article and Find Full Text PDF