Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations.
View Article and Find Full Text PDFCavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation.
View Article and Find Full Text PDFPhosphorescence is commonly utilized for applications including light-emitting diodes and photovoltaics. Machine learning (ML) approaches trained on datasets of singlet-triplet energy gaps may expedite the discovery of phosphorescent compounds with the desired emission energies. However, we show that standard ML approaches for modeling potential energy surfaces inaccurately predict singlet-triplet energy gaps due to the failure to account for spatial localities of spin transitions.
View Article and Find Full Text PDFCovalent functionalization of single-walled carbon nanotubes (SWCNTs) with organic molecules results in red-shifted emissive states associated with sp-defects in the tube lattice, which facilitate their improved optical functionality, including single-photon emission. The energy of the defect-based electronic excitations (excitons) depends on the molecular adducts, the configuration of the defect, and concentration of defects. Here we model the interactions between two sp-defects placed at various distances in the (6,5) SWCNT using time-dependent density functional theory.
View Article and Find Full Text PDFA priori knowledge of physicochemical properties such as melting and boiling could expedite materials discovery. However, theoretical modeling from first principles poses a challenge for efficient virtual screening of potential candidates. As an alternative, the tools of data science are becoming increasingly important for exploring chemical datasets and predicting material properties.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2020
We present a versatile new code released for open community use, the nonadiabatic excited state molecular dynamics (NEXMD) package. This software aims to simulate nonadiabatic excited state molecular dynamics using several semiempirical Hamiltonian models. To model such dynamics of a molecular system, the NEXMD uses the fewest-switches surface hopping algorithm, where the probability of transition from one state to another depends on the strength of the derivative nonadiabatic coupling.
View Article and Find Full Text PDFOptically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination.
View Article and Find Full Text PDFSurface hopping (SH) is a popular mixed quantum-classical method for modeling nonadiabatic excited state processes in molecules and condensed phase materials. The method is simple, efficient, and easy to implement, but the use of classical and independent nuclear trajectories introduces an overcoherence in the electronic density matrix which, if ignored, often leads to spurious results, such as overestimated reaction rates. Several methods have been proposed to incorporate decoherence into SH simulations, but a lack of insightful benchmarks makes their relative accuracy unknown.
View Article and Find Full Text PDFIsomerization of molecular systems is ubiquitous in chemistry and biology, and is also important for many applications. Atomistic simulations can help determine the tunable parameters influencing this process. In this paper, we use the Nonadiabatic EXcited state Molecular Dynamics (NEXMD) software to study the photoisomerization of a representative molecule, 4-styrylquinoline (SQ).
View Article and Find Full Text PDFJ Chem Theory Comput
September 2018
The ability to accurately and efficiently compute quantum-mechanical partial atomistic charges has many practical applications, such as calculations of IR spectra, analysis of chemical bonding, and classical force field parametrization. Machine learning (ML) techniques provide a possible avenue for the efficient prediction of atomic partial charges. Modern ML advances in the prediction of molecular energies [i.
View Article and Find Full Text PDFPartial atomic charge assignment is of immense practical value to force field parametrization, molecular docking, and cheminformatics. Machine learning has emerged as a powerful tool for modeling chemistry at unprecedented computational speeds given accurate reference data. However, certain tasks, such as charge assignment, do not have a unique solution.
View Article and Find Full Text PDFSolvation can be modeled implicitly by embedding the solute in a dielectric cavity. This approach models the induced surface charge density at the solute-solvent boundary, giving rise to extra Coulombic interactions. Herein, the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) software was used to model the photoexcited nonradiative relaxation dynamics in a set of substituted donor-acceptor oligo( p-phenylenevinylene) (PPVO) derivatives in the presence of implicit solvent.
View Article and Find Full Text PDFCovalent functionalization of single-walled carbon nanotubes (SWCNTs) introduces red-shifted emission features in the near-infrared spectral range due to exciton localization around the defect site. Such chemical modifications increase their potential use as near-infrared emitters and single-photon sources in telecommunications applications. Density functional theory (DFT) studies using finite-length tube models have been used to calculate their optical transition energies.
View Article and Find Full Text PDFConjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction.
View Article and Find Full Text PDFSurface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop.
View Article and Find Full Text PDFTime-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation.
View Article and Find Full Text PDFThe novel approach to nonadiabatic quantum dynamics greatly increases the accuracy of the most popular semiclassical technique while maintaining its simplicity and efficiency. Unlike the standard Tully surface hopping in Hilbert space, which deals with population flow, the new strategy in Liouville space puts population and coherence on equal footing. Dual avoided crossing and energy transfer models show that the accuracy is improved in both diabatic and adiabatic representations and that Liouville space simulation converges faster with the number of trajectories than Hilbert space simulation.
View Article and Find Full Text PDFRecent years have witnessed substantial progress in the surface hopping (SH) formulation of non-adiabatic molecular dynamics. A generalization of the traditional fewest switches SH (FSSH), global flux SH (GFSH) utilizes the gross population flow between states to derive SH probabilities. The Liouville space formulation of FSSH puts state populations and coherences on equal footing, by shifting the hopping dynamics from Hilbert to Liouville space.
View Article and Find Full Text PDFGlobal flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport.
View Article and Find Full Text PDF