Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective curative therapy. Recent evidence shows increased circulating myeloid-derived suppressor cells (MDSCs) in cancer, inflammation, and fibrosis, with some of these cells expressing B7H3. We sought to investigate the role of MDSCs in IPF and its potential mediation B7H3.
View Article and Find Full Text PDFThe clinical significance of B7H3 (CD276) and its cleavage product soluble B7H3 (sB7H3) in idiopathic pulmonary fibrosis (IPF) is unknown. Mounting evidence suggests the potential utility of peripheral blood myeloid cell enumeration to predict disease outcome and indicate active lung disease. Here we hypothesized that sB7H3 is involved in regulation of circulating myeloid cells in pulmonary fibrosis.
View Article and Find Full Text PDFMany aging related diseases such as cancer implicate the myofibroblast in disease progression. Furthermore genesis of the myofibroblast is associated with manifestation of cellular senescence of unclear significance. In this study we investigated the role of a common regulator, namely telomerase reverse transcriptase (TERT), in order to evaluate the potential significance of this association between both processes.
View Article and Find Full Text PDFMutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC- cKO) mice by crossing floxed mice with inducible SPC-driven Cre mice.
View Article and Find Full Text PDF