Publications by authors named "Andrew E Naclerio"

Scalable approaches for synthesis and integration of proton selective atomically thin 2D materials with proton conducting polymers can enable next-generation proton exchange membranes (PEMs) with minimal crossover of reactants or undesired species while maintaining adequately high proton conductance for practical applications. Here, we systematically investigate facile and scalable approaches to interface monolayer graphene synthesized scalable chemical vapor deposition (CVD) on Cu foil with the most widely used proton exchange polymer Nafion 211 (N211, ∼25 μm thick film) (i) spin-coating a ∼700 nm thin Nafion carrier layer to transfer graphene (spin + scoop), (ii) casting a Nafion film and cold pressing (cold press), and (iii) hot pressing (hot press) while minimizing micron-scale defects to <0.3% area.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layered h-BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others.

View Article and Find Full Text PDF

Filtering nanoparticulate aerosols from air streams is important for a wide range of personal protection equipment (PPE), including masks used for medical research, healthcare, law enforcement, first responders, and military applications. Conventional PPEs capable of filtering nanoparticles <300 nm are typically bulky and sacrifice breathability to maximize protection from exposure to harmful nanoparticulate aerosols including viruses ∼20-300 nm from air streams. Here, we show that nanopores introduced into centimeter-scale monolayer graphene supported on polycarbonate track-etched supports via a facile oxygen plasma etch can allow for filtration of aerosolized SiO nanoparticles of ∼5-20 nm from air steams while maintaining air permeance of ∼2.

View Article and Find Full Text PDF

Layered two-dimensional (2D) black phosphorus (BP) exhibits novel semiconducting properties including a tunable bandgap and high electron mobility. However, the poor stability of BP in ambient environment severely limits potential for application in future electronic and optoelectronic devices. While passivation or encapsulation of BP using inert materials/polymers has emerged as a plausible solution, a detailed fundamental understanding of BP's reaction with oxygen is imperative to rationally advance its use in applications.

View Article and Find Full Text PDF