Publications by authors named "Andrew E Miller"

Fibrosis-associated fibroblasts have been identified across various fibrotic disorders, but not in the context of biomaterials, fibrotic encapsulation, and the foreign body response. In other fibrotic disorders, a fibroblast subpopulation defined by Thy-1 loss is strongly correlated with fibrosis yet we do not know what promotes Thy-1 loss. We have previously shown that Thy-1 is an integrin regulator enabling normal fibroblast mechanosensing, and here, leveraging nonfibrotic microporous annealed particle (MAP) hydrogels versus classical fibrotic bulk hydrogels, we demonstrate that mice mount a fibrotic response to MAP gels that includes inflammatory signaling.

View Article and Find Full Text PDF

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres.

View Article and Find Full Text PDF

Integrins are cellular receptors that bind the extracellular matrix (ECM) and facilitate the transduction of biochemical and biophysical microenvironment cues into cellular responses. Upon engaging the ECM, integrin heterodimers must rapidly strengthen their binding with the ECM, resulting in the assembly of force-resistant and force-sensitive integrin associated complexes (IACs). The IACs constitute an essential apparatus for downstream signaling and fibroblast phenotypes.

View Article and Find Full Text PDF

Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies.

View Article and Find Full Text PDF

Background: Long-term survival of lung transplants lags behind other solid organs due to early onset of a fibrotic form of chronic rejection known as chronic lung allograft dysfunction (CLAD). Preventing CLAD is difficult as multiple immunologic and physiologic insults contribute to its development. Targeting fibroblast activation, which is the final common pathway leading to CLAD, offers the opportunity to ameliorate fibrosis irrespective of the initiating insult.

View Article and Find Full Text PDF

Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions.

View Article and Find Full Text PDF

Background: Alternatively-activated macrophages (AAMs), an anti-inflammatory macrophage subpopulation, have been implicated in the progression of high grade serous ovarian carcinoma (HGSOC). Increased levels of AAMs are correlated with poor HGSOC survival rates, and AAMs increase the attachment and spread of HGSOC cells in vitro. However, the mechanism by which monocytes in the HGSOC tumor microenvironment are differentiated and polarized to AAMs remains unknown.

View Article and Find Full Text PDF

Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another.

View Article and Find Full Text PDF