Liposomes are a strong supporting tool in vaccine technology, as they are a versatile system that not only act as antigen delivery systems but also adjuvants that can be highly effective at stimulating both innate and adaptive immune responses. Their ability to induce cell-mediated immunity makes their use in vaccines a useful tool in the development of novel, more effective vaccines against intracellular infections (e.g.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2022
Recent research in the aquaporin (AQP) field has identified a role for diverse AQPs in extracellular vesicles (EV). Though still in its infancy, there is a growing body of knowledge in the area; AQPs in EV have been suggested as biomarkers for disease, as drug targets and show potential as therapeutics. To advance further in this field, AQPs in EV must be better understood.
View Article and Find Full Text PDFMacrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells.
View Article and Find Full Text PDFTetraspanins exert a wide range of cellular functions of broad medical importance. Despite this, their biophysical characteristics are incompletely understood. Only two high-resolution structures of full-length tetraspanins have been solved.
View Article and Find Full Text PDFBiological nanoparticles include liposomes, extracellular vesicle and lipid-based discoidal systems. When studying such particles, there are several key parameters of interest, including particle size and concentration. Measuring these characteristics can be of particular importance in the research laboratory or when producing such particles as biotherapeutics.
View Article and Find Full Text PDFInflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation.
View Article and Find Full Text PDFThe lymphatics are a target for a range of therapeutic purposes, including cancer therapy and vaccination, and both vesicle size and charge have been considered as factors controlling lymphatic targeting. Within this work, a range of liposomal formulations were investigated to develop a liposomal lymphatic targeting system. Initial screening of formulations considered the effect of charge, with neutral, cationic and anionic liposomes being investigated.
View Article and Find Full Text PDFThis report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples.
View Article and Find Full Text PDFThe airways of individuals with cystic fibrosis (CF) are abundantly colonised by Staphylococcus aureus and Pseudomonas aeruginosa. Co-infecting hypoxic regions of static mucus within CF airways, together with decreases in pulmonary function, mucus plugging and oxygen consumption by host neutrophils gives rise to regions of anoxia. This study determined the impact of anaerobiosis upon S.
View Article and Find Full Text PDFBiochem Soc Trans
April 2019
Apoptosis is an essential process for normal physiology and plays a key role in the resolution of inflammation. Clearance of apoptotic cells (ACs) involves complex signalling between phagocytic cells, ACs, and the extracellular vesicles (EVs) they produce. Here, we discuss apoptotic cell-derived extracellular vesicles (ACdEVs) and how their structure relates to their function in AC clearance and the control of inflammation, focussing on the ACdEV proteome.
View Article and Find Full Text PDFApoptosis is a key event in the control of inflammation. However, for this to be successful, dying cells must efficiently and effectively communicate their presence to phagocytes to ensure timely removal of dying cells. Here, we consider apoptotic cell-derived extracellular vesicles and the role of contained lipids and lipid mediators in ensuring effective control of inflammation.
View Article and Find Full Text PDFOxysterols (OHC) are biologically active cholesterol metabolites circulating in plasma that may be formed enzymatically (e.g. 24S-OHC, 25-OHC and 27-OHC) or by autoxidative mechanisms (e.
View Article and Find Full Text PDFExtracellular Vesicles (EVs) are gaining interest as central players in liquid biopsies, with potential applications in diagnosis, prognosis and therapeutic guidance in most pathological conditions. These nanosized particles transmit signals determined by their protein, lipid, nucleic acid and sugar content, and the unique molecular pattern of EVs dictates the type of signal to be transmitted to recipient cells. However, their small sizes and the limited quantities that can usually be obtained from patient-derived samples pose a number of challenges to their isolation, study and characterization.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2018
Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration.
View Article and Find Full Text PDFBackground/aims: Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported.
View Article and Find Full Text PDFLiposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system.
View Article and Find Full Text PDFDifferences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype.
View Article and Find Full Text PDFObjectives: Particle delivery to the airways is an attractive prospect for many potential therapeutics, including vaccines. Developing strategies for inhalation of particles provides a targeted, controlled and non-invasive delivery route but, as with all novel therapeutics, in vitro and in vivo testing are needed prior to clinical use. Whilst advanced vaccine testing demands the use of animal models to address safety issues, the production of robust in vitro cellular models would take account of the ethical framework known as the 3Rs (Replacement, Reduction and Refinement of animal use), by permitting initial screening of potential candidates prior to animal use.
View Article and Find Full Text PDFTissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined.
View Article and Find Full Text PDFDiscovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic.
View Article and Find Full Text PDFThe presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g.
View Article and Find Full Text PDF