Publications by authors named "Andrew D Whyment"

Background And Purpose: The 5-HT7 receptor is a GPCR that is the target of a broad range of antidepressant and antipsychotic drugs. Various studies have demonstrated an ability of the 5-HT7 receptor to modulate glutamatergic neurotransmission and cognitive processes although the potential impact upon AMPA receptors has not been investigated directly. The purposes of the present study were to investigate a direct modulation of the GluA1 AMPA receptor subunit and determine how this might influence AMPA receptor function.

View Article and Find Full Text PDF

Oligomers of beta-amyloid (Aβ) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aβ-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aβ monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aβ(1-42).

View Article and Find Full Text PDF

The role of histamine in regulating excitability of sympathetic preganglionic neurons (SPNs) and the expression of histamine receptor mRNA in SPNs was investigated using whole-cell patch-clamp electrophysiological recording techniques combined with single-cell reverse transcriptase polymerase chain reaction (RT-PCR) in transverse neonatal rat spinal cord slices. Bath application of histamine (100 microM) or the H1 receptor agonist histamine trifluoromethyl toluidide dimaleate (HTMT; 10 microM) induced membrane depolarization associated with a decrease in membrane conductance in the majority (70%) of SPNs tested, via activation of postsynaptic H1 receptors negatively coupled to one or more unidentified K+ conductances. Histamine and HTMT application also induced or increased the amplitude and/or frequency of membrane potential oscillations in electrotonically coupled SPNs.

View Article and Find Full Text PDF

The hypothalamic arcuate nucleus (ARC) integrates and responds to satiety and hunger signals and forms the origins of the central neural response to perturbations in energy balance. Here we show that rat ARC neurons containing neuropeptide Y (NPY) and agouti-related protein (AgRP), which are conditional pacemakers, are activated by orexigens and inhibited by the anorexigen leptin. We propose a neuron-specific signaling mechanism through which central and peripheral signals engage the central neural anabolic drive.

View Article and Find Full Text PDF

The role of GABA receptors in synaptic transmission to neonatal rat sympathetic preganglionic neurones (SPNs) was investigated utilizing whole-cell patch clamp recording techniques in longitudinal and transverse spinal cord slice preparations. In the presence of glutamate receptor antagonists (NBQX, 5 microm and D-APV, 10 microm), electrical stimulation of the ipsilateral or contralateral lateral funiculi (iLF and cLF, respectively) revealed monosynaptic inhibitory postsynaptic potentials (IPSPs) in 75% and 65% of SPNs, respectively. IPSPs were sensitive to bicuculline (10 microM) in all neurones tested and reversed polarity around -55 mV, the latter indicating mediation via chloride conductances.

View Article and Find Full Text PDF