Publications by authors named "Andrew D Regan"

Entry is the first step in the infectious life cycle of a virus. In the case of rhabdoviruses, entry is facilitated exclusively by the envelope glycoprotein G and its interactions with the host cell. For vesicular stomatitis virus (VSV), attachment to the cell surface was thought to be facilitated by interactions with the lipid phosphatidylserine, however recent work suggests that it is in fact initiated by recognition of proteinaeous receptors.

View Article and Find Full Text PDF

Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP.

View Article and Find Full Text PDF

Canine alphacoronaviruses (CCoV) exist in two serotypes, type I and II, both of which can cause severe gastroenteritis. Here, we characterize a canine alphacoronavirus, designated CCoV-A76, first isolated in 1976. Serological studies show that CCoV-A76 is distinct from other CCoVs, such as the prototype CCoV-1-71.

View Article and Find Full Text PDF

Feline infectious peritonitis is a lethal disease of felids caused by systemic infection with a feline coronavirus. Here, we report identification and analysis of the feline homologue to the human lectin DC-SIGN and show that it is a coreceptor for virulent strains of serotype 1 and serotype 2 feline coronaviruses.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) exerts pleiotropic effects during oncogenesis, including the stimulation of cell migration and invasiveness. Although a number of traditional signaling proteins (e.g.

View Article and Find Full Text PDF

Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process.

View Article and Find Full Text PDF

The entry and dissemination of viruses in several families can be mediated by C-type lectins such as DC-SIGN. We showed that entry of the serotype II feline coronavirus strains feline infectious peritonitis virus (FIPV) WSU 79-1146 and DF2 into nonpermissive mouse 3T3 cells can be rescued by the expression of human DC-SIGN (hDC-SIGN) and that infection of a permissive feline cell line (Crandall-Reese feline kidney) was markedly enhanced by the overexpression of hDC-SIGN. Treatment with mannan considerably reduced infection of feline monocyte-derived cells expressing DC-SIGN, indicating a role for FIPV infection in vivo.

View Article and Find Full Text PDF

Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes.

View Article and Find Full Text PDF

The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor.

View Article and Find Full Text PDF

A striking characteristic of a Rab protein is its steady-state localization to the cytosolic surface of a particular subcellular membrane. In this study, we have undertaken a combined bioinformatic and experimental approach to examine the evolutionary conservation of Rab protein localization. A comprehensive primary sequence classification shows that 10 out of the 11 Rab proteins identified in the yeast (Saccharomyces cerevisiae) genome can be grouped within a major subclass, each comprising multiple Rab orthologs from diverse species.

View Article and Find Full Text PDF