Publications by authors named "Andrew D Raddatz"

Head and neck squamous cell carcinoma (HNSCC) cells are highly heterogeneous in their metabolism and typically experience elevated reactive oxygen species (ROS) levels such as superoxide and hydrogen peroxide (HO) in the tumor microenvironment. Tumor cells survive under these chronic oxidative conditions by upregulating antioxidant systems. To investigate the heterogeneity of cellular responses to chemotherapeutic HO generation in tumor and healthy tissue, we leveraged single-cell RNA-sequencing (scRNA-seq) data to perform redox systems-level simulations of quinone-cycling β-lapachone treatment as a source of NQO1-dependent rapid superoxide and hydrogen peroxide (HO) production.

View Article and Find Full Text PDF

Intracellular drug metabolism involves transport, bioactivation, conjugation, and other biochemical steps. The dynamics of these steps are each dependent on a number of other cellular factors that can ultimately lead to unexpected behavior. In this review, we discuss the confounding processes and coupled reactions within bioactivation networks that require a systems-level perspective in order to fully understand the time-varying behavior.

View Article and Find Full Text PDF

A T cell clone is able to distinguish Ags in the form of peptide-MHC complexes with high specificity and sensitivity; however, how subtle differences in peptide-MHC structures translate to distinct T cell effector functions remains unknown. We hypothesized that mitochondrial positioning and associated calcium responses play an important role in T cell Ag recognition. We engineered a microfluidic system to precisely manipulate and synchronize a large number of cell-cell pairing events, which provided simultaneous real-time signaling imaging and organelle tracking with temporal precision.

View Article and Find Full Text PDF

Metastasis is the leading cause of cancer deaths due to the spread of cancer cells through the blood vessels and the subsequent formation of secondary tumors. Metastasizing cancer cells in the human vasculature are called circulating tumor cells (CTCs) and are characterized to express the epithelial cell adhesion molecule (EpCAM). They are further known to survive physiological fluid shear stress (FSS) conditions.

View Article and Find Full Text PDF