Research on advanced biopreservation - technologies that include, for example, partial freezing, supercooling, and vitrification with nanoparticle infusion and laser rewarming - is proceeding at a rapid pace, potentially affecting many areas of medicine and the life sciences, food, agriculture, and environmental conservation. Given the breadth and depth of its medical, scientific, and corresponding social impacts, advanced biopreservation is poised to emerge as a disruptive technology with real benefits, but also ethical challenges and risks. Early engagement with potentially affected groups can help navigate possible societal barriers to adoption of this new technology and help ensure that emerging capabilities align with the needs, desires, and expectations of a broad range of interested parties.
View Article and Find Full Text PDFAdvanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.
View Article and Find Full Text PDFThis exploratory study set out to pilot use of a Risk Innovation approach to support the development of advanced biopreservation technologies, and the societally beneficial development of advanced technologies more broadly. This is the first study to apply the Risk Innovation approach - which has previously been used to help individual organizations clarify areas of value and threats - to multiple entities involved in developing an emerging technology.
View Article and Find Full Text PDFTime limits on organ viability from retrieval to implantation shape the US system for human organ transplantation. Preclinical research has demonstrated that emerging biopreservation technologies can prolong organ viability, perhaps indefinitely. These technologies could transform transplantation into a scheduled procedure without geographic or time constraints, permitting organ assessment and potential preconditioning of the recipients.
View Article and Find Full Text PDFJ Med Internet Res
October 2019
Advanced brain machine interfaces provide potentially transformative approaches to treating neurological conditions and enhancing the performance of users. Yet, as technological capabilities continue to progress in leaps and bounds, there is a possibility that these capabilities outstrip our collective understanding of how to ensure brain machine interfaces are developed and used ethically and responsibly. In this case, there is an overt danger of rapid technological developments leading to unanticipated harm through a lack of foresight including threats to privacy, autonomy, self-identity, and other areas of personal and social value which, while hard to quantify, represent substantial risks.
View Article and Find Full Text PDFZika infection in pregnant women is associated with an elevated probability of giving birth to a child with microcephaly and multiple other disabilities. Public health messaging on Zika prevention has predominantly targeted women who know they are pregnant or intend to become pregnant, but not teenage females for whom unintended pregnancy is more likely. Vulnerabilities among this population to reproductive risks associated with Zika are further amplified by restrictive abortion laws in several Zika-impacted states.
View Article and Find Full Text PDFDue to their widespread incorporation into a range of biomedical and consumer products, the ingestion of silver nanoparticles (AgNPs) is of considerable concern to human health. However, the extent to which AgNPs will be modified within the gastric compartment of the gastrointestinal tract is still poorly understood. Studies have yet to fully evaluate the extent of physicochemical changes to AgNPs in the presence of biological macromolecules, such as pepsin, the most abundant protein in the stomach, or the influence of AgNPs on protein structure and activity.
View Article and Find Full Text PDFInfertility and adverse pregnancy outcomes are significant public health concerns with global prevalence. Over the past 35 years, research has addressed whether exposure to power-frequency magnetic fields is one of the etiologic factors attributed to these conditions. However, no apparent authoritative reviews on this topic have been published in the peer-reviewed literature for nearly 15 years.
View Article and Find Full Text PDFPower-frequency magnetic field exposure science as it relates to men and couples have not been explored despite the advantage of this information in the design and interpretation of reproductive health epidemiology studies. This analysis examined the distribution and temporal variability of exposures in men, and the correlation of exposures within couples using data from a longitudinal study of 25 men and their female partners recruited from an infertility clinic. The average and 90th percentile demonstrated fair to good reproducibility, whereas the maximum showed poor reproducibility over repeated sampling days, each separated by a median of 4.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) have been used as antimicrobials in a number of applications, including topical wound dressings and coatings for consumer products and biomedical devices. Ingestion is a relevant route of exposure for AgNPs, whether occurring unintentionally via Ag dissolution from consumer products, or intentionally from dietary supplements. AgNP have also been proposed as substitutes for antibiotics in animal feeds.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2015
As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.
View Article and Find Full Text PDFConsumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.
View Article and Find Full Text PDF