The nonorthogonal active space decomposition (NO-ASD) methodology is proposed for describing systems containing multiple correlation mechanisms. NO-ASD partitions the wave function by a correlation mechanism, such that the interactions between different correlation mechanisms are treated with an effective Hamiltonian approach, while interactions between correlated orbitals in the same correlation mechanism are treated explicitly. As a result, the determinant expansion scales polynomially with the number of correlation mechanisms rather than exponentially, which significantly reduces the factorial scaling associated with the size of the correlated orbital space.
View Article and Find Full Text PDFNonorthogonal approaches to electronic structure methods have recently received renewed attention, with the hope that new forms of nonorthogonal wavefunction Ansätze may circumvent the computational bottleneck of orthogonal-based methods. The basis in which nonorthogonal configuration interaction is performed defines the compactness of the wavefunction description and hence the efficiency of the method. Within a molecular orbital approach, nonorthogonal configuration interaction is defined by a "different orbitals for different configurations" picture, with different methods being defined by their choice of determinant basis functions.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2020
Reliable global elucidation of (subsets of) self-consistent field solutions is required for continued development and application of computational approaches that utilize these solutions as reference wavefunctions. We report the derivation and implementation of a stochastic approach to perform global elucidation of self-consistent field solutions by exploiting the connection between global optimization and global elucidation problems. We discuss the design of the algorithm through combining basin-hopping search algorithms with a Lie algebraic approach to linearize self-consistent field solution space, while also allowing preservation of desired spin-symmetry properties of the wavefunction.
View Article and Find Full Text PDF