J Struct Biol
March 2015
While relatively simple biologically, bacteriophages are sophisticated biochemical machines that execute a precise sequence of events during virus assembly, DNA packaging, and ejection. These stages of the viral life cycle require intricate coordination of viral components whose structures are being revealed by single molecule experiments and high resolution (cryo-electron microscopy) reconstructions. For example, during packaging, bacteriophages employ some of the strongest known molecular motors to package DNA against increasing pressure within the viral capsid shell.
View Article and Find Full Text PDFThe genetic material in living cells is organized into complex structures in which DNA is subjected to substantial contortions. Here we investigate the difference in structure, dynamics, and flexibility between two topological states of a short (107 base pair) DNA sequence in a linear form and a covalently closed, tightly curved circular DNA form. By employing a combination of all-atom molecular dynamics (MD) simulations and elastic rod modeling of DNA, which allows capturing microscopic details while monitoring the global dynamics, we demonstrate that in the highly curved regime the microscopic flexibility of the DNA drastically increases due to the local mobility of the duplex.
View Article and Find Full Text PDFIn the bacteriophage ϕ29, DNA is packed into a preassembled capsid from which it ejects under high pressure. A recent cryo-EM reconstruction of ϕ29 revealed a compact toroidal DNA structure (30-40 basepairs) lodged within the exit cavity formed by the connector-lower collar protein complex. Using multiscale models, we compute a detailed structural ensemble of intriguing DNA toroids of various lengths, all highly compatible with experimental observations.
View Article and Find Full Text PDFProtein-mediated DNA looping, such as that induced by the lactose repressor (LacI) of Escherichia coli, is a well-known gene regulation mechanism. Although researchers have given considerable attention to DNA looping by LacI, many unanswered questions about this mechanism, including the role of protein flexibility, remain. Recent single-molecule observations suggest that the two DNA-binding domains of LacI are capable of splaying open about the tetramerization domain into an extended conformation.
View Article and Find Full Text PDF