Publications by authors named "Andrew Creagh"

Importance: Higher physical activity levels have been suggested as a potential modifiable risk factor for lowering the risk of incident Parkinson's disease (PD). This study uses objective measures of physical activity to investigate the role of reverse causation in the observed association.

Objective: To investigate the association between accelerometer-derived daily step count and incident PD, and to assess the impact of reverse causation on this association.

View Article and Find Full Text PDF

Common to all inflammatory arthritides, namely rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis, and juvenile idiopathic arthritis, is a potential for reduced mobility that manifests through joint pain, swelling, stiffness, and ultimately joint damage. Across these conditions, consensus has been reached on the need to capture outcomes related to mobility, such as functional capacity and physical activity, as core domains in randomised controlled trials. Existing endpoints within these core domains rely wholly on self-reported questionnaires that capture patients' perceptions of their symptoms and activities.

View Article and Find Full Text PDF

Purpose: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices against camera-annotated ground truth. This study aimed to describe the development and validation of step count derived from a wrist-worn accelerometer and assess its association with cardiovascular and all-cause mortality in a large prospective cohort.

Methods: We developed and externally validated a self-supervised machine learning step detection model, trained on an open-source and step-annotated free-living dataset.

View Article and Find Full Text PDF

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy.

View Article and Find Full Text PDF

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients' Apple smartwatch continuously over the study duration.

View Article and Find Full Text PDF

Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction.

View Article and Find Full Text PDF

Background: Step count is an intuitive measure of physical activity frequently quantified in a range of health-related studies; however, accurate quantification of step count can be difficult in the free-living environment, with step counting error routinely above 20% in both consumer and research-grade wrist-worn devices. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and to assess its association with cardiovascular and all-cause mortality in a large prospective cohort study.

Methods: We developed and externally validated a hybrid step detection model that involves self-supervised machine learning, trained on a new ground truth annotated, free-living step count dataset (OxWalk, n=39, aged 19-81) and tested against other open-source step counting algorithms.

View Article and Find Full Text PDF

Heart rate variability (HRV) is an important metric with a variety of applications in clinical situations such as cardiovascular diseases, diabetes mellitus, and mental health. HRV data can be potentially obtained from electrocardiography and photoplethysmography signals, then computational techniques such as signal filtering and data segmentation are used to process the sampled data for calculating HRV measures. However, uncertainties arising from data acquisition, computational models, and physiological factors can lead to degraded signal quality and affect HRV analysis.

View Article and Find Full Text PDF

Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using smartphone sensor data that may contain missing values.

View Article and Find Full Text PDF

Smartphone and wearable devices may act as powerful tools to remotely monitor physical function in people with neurodegenerative and autoimmune diseases from out-of-clinic environments. Detection of progression onset or worsening of symptoms is especially important in people living with multiple sclerosis (PwMS) in order to enable optimally adapted therapeutic strategies. MS symptoms typically follow subtle and fluctuating disease courses, patient-to-patient, and over time.

View Article and Find Full Text PDF

The emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed.

View Article and Find Full Text PDF

Leveraging consumer technology such as smartphone and smartwatch devices to objectively assess people with multiple sclerosis (PwMS) remotely could capture unique aspects of disease progression. This study explores the feasibility of assessing PwMS and Healthy Control's (HC) physical function by characterising gait-related features, which can be modelled using machine learning (ML) techniques to correctly distinguish subgroups of PwMS from healthy controls. A total of 97 subjects (24 HC subjects, 52 mildly disabled (PwMSmild, EDSS [0-3]) and 21 moderately disabled (PwMSmod, EDSS [3.

View Article and Find Full Text PDF

Objectives: Slow gait has been shown to be a good predictor of declining cognitive function in healthy older adults. Motoric cognitive risk (MCR) syndrome is a new construct incorporating slow gait and subjective cognitive complaints in individuals without dementia who have preserved activities of daily living. This analysis investigated the prevalence of MCR and factors associated with MCR in a nationally representative population.

View Article and Find Full Text PDF