There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success.
View Article and Find Full Text PDFThe cholinergic nervous system has been implicated in mood disorders, evident in the fast-onset antidepressant effects of scopolamine, a potent muscarinic antagonist, in clinical studies. One prominent disadvantage of the use of scopolamine in the treatment of depression is its detrimental effects on cognition, especially as such effects might aggravate cognitive deficits that occur with depression itself. Thus, the identification of antimuscarinic drugs that are free of such detrimental effects may provide an important avenue for the development of novel therapeutics for the management of depression.
View Article and Find Full Text PDFThe emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes.
View Article and Find Full Text PDFBetter therapeutic options are needed for pain. Baclofen, buspirone, and morphine are characterized as having analgesic properties. However, little is known about potential interactions between analgesic effects of these drugs when combined.
View Article and Find Full Text PDFA rapid, transition metal-free, high-yielding, tetrabutylammonium bromide-promoted method of N-arylation is reported within. The optimized conditions tolerated a wide range of secondary amines and was equally effective with bromo- and chlorobenzene-including substituted aryl halides. The developed method is found to be effective for N-arylation when compared to earlier methods which involve harsh conditions, transition metals, lack of scalability, and long reaction times.
View Article and Find Full Text PDFDuring optimization of the synthesis of the mixed μ opioid agonist/δ opioid antagonist 5-(hydroxymethyl)oxymorphone (UMB425) for scale-up, it was unexpectedly discovered that the 4,5-epoxy bridge underwent rearrangement on treatment with boron tribromide (BBr) to yield a novel opioid with a little-studied pyranomorphinan skeleton. This finding opens the pyranomorphinans for further investigations of their pharmacological profiles and represents a novel drug class with the dual profile (μ vs δ) predicted to yield lower tolerance and dependence. The structure was assigned with the help of 1D, 2D NMR and the X-ray crystal structure.
View Article and Find Full Text PDFOpioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs), including the μ-opioid receptor, interact with G-proteins and other proteins via their intracellular face as required for signal transduction. However, characterization of the structure of the intracellular face of GPCRs is complicated by the experimental methods used for structural characterization. In the present study we undertook a series of long-time molecular dynamics (MD) simulations, ranging from 1 to 5 μs, on the μ-opioid receptor in both the dimeric and monomeric states.
View Article and Find Full Text PDFBackground: Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists.
View Article and Find Full Text PDFThe efflux transporter protein P-glycoprotein (P-gp) is capable of affecting the central distribution of diverse neurotherapeutics, including opioid analgesics, through their active removal from the brain. P-gp located at the blood brain barrier has been implicated in the development of tolerance to opioids and demonstrated to be up-regulated in rats tolerant to morphine and oxycodone. We have previously examined the influence of hydrogen-bonding oxo-substitutents on the P-gp-mediated efflux of 4,5-epoxymorphinan analgesics, as well as that of N-substituted analogues of meperidine.
View Article and Find Full Text PDFOpioid analgesics are the treatment of choice for chronic, severe pain. During the course of developing new derivatives of morphine and codeine, we observed an unanticipated S2' substitution reaction product during an attempted 3-O-demethylation of codeine using BBr. NMR spectroscopy and X-ray crystallographic data indicate that a significant product is -bromocodide, a useful intermediate for the production of C-6-demethoxythebaine derivatives.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2013
Selective σ2 ligands continue to be an active target for medications to attenuate the effects of psychostimulants. In the course of our studies to determine the optimal substituents in the σ2-selective phenyl piperazines analogues with reduced activity at other neurotransmitter systems, we discovered that 1-(3-chlorophenyl)-4-phenethylpiperazine actually had preferentially increased affinity for dopamine transporters (DAT), yielding a highly selective DAT ligand.
View Article and Find Full Text PDFA series of ring-constrained phenylpropyloxyethylamines, partial opioid structure analogs and derivatives of a previously studied sigma (σ) receptor ligand, was synthesized and evaluated at σ and opioid receptors for receptor selectivity. The results of this study identified several compounds with nanomolar affinity at both σ receptor subtypes. Compounds 6 and 9 had the highest selectivity for both σ receptor subtypes, compared to μ opioid receptors.
View Article and Find Full Text PDFMolecular details of μ opioid receptor activations were obtained using molecular dynamics simulations of the receptor in the presence of three agonists, three antagonists, and a partial agonist and on the constitutively active T279K mutant. Agonists have a higher probability of direct interactions of their basic nitrogen (N) with Asp147 as compared with antagonists, indicating that direct ligand-Asp147 interactions modulate activation. Medium-size substituents on the basic N of antagonists lead to steric interactions that perturb N-Asp147 interactions, while additional favorable interactions occur with larger basic N substituents, such as in N-phenethylnormorphine, restoring N-Asp147 interactions, leading to agonism.
View Article and Find Full Text PDFBackground: Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice.
View Article and Find Full Text PDFOpioid narcotics are used for the treatment of moderate-to-severe pain and primarily exert their analgesic effects through μ receptors. Although traditional μ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. Herein, we report 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor synthesized from thebaine.
View Article and Find Full Text PDFMolecular Dynamics simulations of the pentamidine-S100B complex, where two molecules of pentamidine bind per monomer of S100B, were performed in an effort to determine what properties would be desirable in a pentamidine-derived compound as an inhibitor for S100B. These simulations predicted that increasing the linker length of the compound would allow a single molecule to span both pentamidine binding sites on the protein. The resulting compound, SBi4211 (also known as heptamidine), was synthesized and experiments to study its inhibition of S100B were performed.
View Article and Find Full Text PDFMorphinans have a storied history in medicinal chemistry as pain management drugs but have received attention as modulators of cholinergic signaling for the treatment of Alzheimer's Disease (AD). Galantamine is a reversible, competitive acetylcholinesterase (AChE) inhibitor and allosteric potentiating ligand of nicotinic acetylcholine receptors (nAChR-APL) that shares many common structural elements with morphinan-based opioids. The structurally diverse opioids codeine and eseroline, like galantamine, are also nAChR-APL that have greatly diminished affinity for AChE, representing potential lead compounds for selective nAChR-APL development.
View Article and Find Full Text PDFA series of phenylpropyloxyethylamines and cinnamyloxyethylamines were synthesized as deconstructed analogs of 14-phenylpropyloxymetopon and analyzed for opioid receptor binding affinity. Using the Conformationally Sampled Pharmacophore modeling approach, we discovered a series of compounds lacking a tyrosine mimetic, historically considered essential for μ opioid binding. Based on the binding studies, we have identified the optimal analogs to be N-methyl-N-phenylpropyl-2-(3-phenylpropoxy)ethanamine, with 1520 nM, and 2-(cinnamyloxy)-N-methyl-N-phenethylethanamine with 1680 nM affinity for the μ opioid receptor.
View Article and Find Full Text PDFMethamphetamine is a highly addictive psychostimulant drug of abuse that causes neurotoxicity with high or repeated dosing. Earlier studies demonstrated the ability of the selective σ receptor ligand N-phenethylpiperidine oxalate (AC927) to attenuate the neurotoxic effects of methamphetamine in vivo. However, the precise mechanisms through which AC927 conveys its protective effects remain to be determined.
View Article and Find Full Text PDFDespite being studied for over 30 years, a consensus structure-activity relationship (SAR) that encompasses the full range peptidic and nonpeptidic μ-opioid receptor ligands is still not available. To achieve a consensus SAR the Conformationally Sampled Pharmacophore (CSP) method was applied to develop a predictive model of the efficacy of μ-opioid receptor ligands. Emphasis was placed on predicting the efficacy of a wide range of agonists, partial agonists, and antagonists as well as understanding their mode of interaction with the receptor.
View Article and Find Full Text PDFBackground: Sigma receptors represent a unique structural class of proteins and they have become increasingly studied as viable medication development targets for neurological and psychiatric disorders, including drug abuse. Earlier studies have shown that cocaine and many other abused substances interact with sigma receptors and that antagonism of these proteins can mitigate their actions.
Methods: In the present study, AC927 (1-(2-phenethyl)piperidine oxalate), a selective sigma receptor ligand, was tested against the behavioral and toxic effects of cocaine in laboratory animals.
S100B is highly over-expressed in many cancers, including malignant melanoma. In such cancers, S100B binds wild-type p53 in a calcium-dependent manner, sequestering it, and promoting its degradation, resulting in the loss of p53-dependent tumor suppression activities. Therefore, S100B inhibitors may be able to restore wild-type p53 levels in certain cancers and provide a useful therapeutic strategy.
View Article and Find Full Text PDFMethamphetamine interacts with sigma (σ) receptors and AC927, a selective σ receptor ligand, protects against methamphetamine-induced dopaminergic neurotoxicity. In the present study, the effects of AC927 on methamphetamine-induced hyperthermia and striatal serotonergic neurotoxicity were evaluated. Male, Swiss Webster mice were injected (i.
View Article and Find Full Text PDF