Background: One in four pregnancies end in a pregnancy loss. Although the effect on couples is well documented, evidence-based treatments and prediction models are absent. Fetal aneuploidy is associated with a higher chance of a next successful pregnancy compared with euploid pregnancy loss in which underlying maternal conditions might be causal.
View Article and Find Full Text PDFChromosome errors, or aneuploidy, affect an exceptionally high number of human conceptions, causing pregnancy loss and congenital disorders. Here, we have followed chromosome segregation in human oocytes from females aged 9 to 43 years and report that aneuploidy follows a U-curve. Specific segregation error types show different age dependencies, providing a quantitative explanation for the U-curve.
View Article and Find Full Text PDFThe faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked.
View Article and Find Full Text PDFBackground: In many organisms, homologous chromosomes rely upon recombination-mediated linkages, termed crossovers, to promote their accurate segregation at meiosis I. In budding yeast, the evolutionarily conserved mismatch-repair paralogues, Msh4 and Msh5, promote crossover formation in conjunction with several other proteins, collectively termed the Synapsis Initiation Complex (SIC) proteins or 'ZMM's (Zip1-Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3). zmm mutants show decreased levels of crossovers and increased chromosome missegregation, which is thought to cause decreased spore viability.
View Article and Find Full Text PDF