Publications by authors named "Andrew Ceballos"

We demonstrate a high-speed linear microelectromechanical systems (MEMS) phase modulator capable of random access scanning at 350 kHz, so that any state can be accessed in 2.9 μs from any other state. 670 scan lines with a .

View Article and Find Full Text PDF

We present the demonstration of phase-dependent laser acceleration and deflection of electrons using a symmetrically driven silicon dual pillar grating structure. We show that exciting an evanescent inverse Smith-Purcell mode on each side of a dual pillar grating can produce hyperbolic cosine acceleration and hyperbolic sine deflection modes, depending on the relative excitation phase of each side. Our devices accelerate sub-relativistic 99.

View Article and Find Full Text PDF

Compared with conventional planar optical image sensors, a curved focal plane array can simplify the lens design and improve the field of view. In this paper, we introduce the design and implementation of a segmented, hemispherical, CMOS-compatible silicon image plane for a 10-mm diameter spherical monocentric lens. To conform to the hemispherical focal plane of the lens, we use flexible gores that consist of arrays of spring-connected silicon hexagons.

View Article and Find Full Text PDF

Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes.

View Article and Find Full Text PDF

We present the demonstration of high-gradient laser acceleration and deflection of electrons with silicon dual-pillar grating structures using both evanescent inverse Smith-Purcell modes and coupled modes. Our devices accelerate subrelativistic 86.5 and 96.

View Article and Find Full Text PDF

We report the fabrication and first demonstration of an electron beam position monitor for a dielectric microaccelerator. This device is fabricated on a fused silica substrate using standard optical lithography techniques and uses the radiated optical wavelength to measure the electron beam position with a resolution of 10 μm, or 7% of the electron beam spot size. This device also measures the electron beam spot size in one dimension.

View Article and Find Full Text PDF

Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner.

Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300-430 nm range.

View Article and Find Full Text PDF