Publications by authors named "Andrew Castillo"

-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time. Here we sought to connect the structural changes at regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions.

View Article and Find Full Text PDF

Hyperpolarized C magnetic resonance spectroscopy (MRS) provides unprecedented opportunities to obtain clinical diagnostic information through in vivo monitoring of metabolic pathways. The continuing advancement of this field relies on the identification of molecular probes that can effectively interrogate pathways critical to disease. In this report, we describe the synthesis, development, and in vivo application of sodium [1-C]-glycerate ([C]-Glyc) as a novel probe for evaluating glycolysis using hyperpolarized C MRS.

View Article and Find Full Text PDF

Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests.

View Article and Find Full Text PDF

Purpose: To report a patient presenting with a symptomatic retinal pigment epithelial detachment (RPED) that resolved after successful treatment of a slow flow dural carotid cavernous fistula (CCF). Possible pathophysiological mechanisms are discussed.

Methods: Interventional case report.

View Article and Find Full Text PDF

Proper chromosome segregation in eukaryotes is driven by a complex superstructure called the mitotic spindle. Assembly, maintenance, and function of the spindle depend on centrosome migration, organization of microtubule arrays, and force generation by microtubule motors. Spindle pole migration and elongation are controlled by the unique balance of forces generated by antagonistic molecular motors that act upon microtubules of the mitotic spindle.

View Article and Find Full Text PDF

Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles.

View Article and Find Full Text PDF