Publications by authors named "Andrew Caruana"

In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C -edge. From the XMCD sum rules an estimated magnetic moment of 0.

View Article and Find Full Text PDF

Surface-tethered polymers have been shown to be an efficient lubrication strategy for boundary and mixed lubrication by providing a solvated film between solid surfaces. We have assessed the performance of various graft copolymers as friction modifier additives in oil and revealed important structure-property relationships for this application. The polymers consisted of an oil-soluble, grafted poly(lauryl acrylate) segment and a polar, linear poly(4-acryloylmorpholine) anchor group.

View Article and Find Full Text PDF

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C -edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 μ/C atom induced in the graphene layer.

View Article and Find Full Text PDF

As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry.

View Article and Find Full Text PDF

The effect of the stacking sequence on magnetic and superconducting properties in LaSrMnO (LSMO)/YBaCuO (YBCO) and LSMO/SrTiO/YBCO heterostructures, which consequently affected the magnetic proximity effect (MPE), was investigated using spin-polarized neutron reflectivity experiments. The results established the intrinsic nature of MPE and its correlation with stacking sequence-dependent magnetic and superconducting properties in these oxide heterostructure systems. We found an increase in the superconducting transition temperature () and magnetization for both of the heterostructures as compared to heterostructures with a reversed stacking order.

View Article and Find Full Text PDF

The elastic modulus and hydrophilicity of cross-linked poly(dimethylsiloxane) (PDMS) are tunable via cross-linker concentration and the addition of a simple surfactant, CE, before curing. However, the surfactant concentration, [CE], reduces the elastic modulus (73% lower for 6.3% w/w) because it reduces the extent of curing.

View Article and Find Full Text PDF

All-oxide-based synthetic antiferromagnets (SAFs) are attracting intense research interest due to their superior tunability and great potentials for antiferromagnetic spintronic devices. In this work, using the LaCaMnO/CaRuTiO (LCMO/CRTO) superlattice as a model SAF, we investigated the layer-resolved magnetic reversal mechanism by polarized neutron reflectivity. We found that the reversal of LCMO layer moments is mediated by nucleation, expansion, and shrinkage of a magnetic soliton.

View Article and Find Full Text PDF

We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH-Ar-SOH solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (-Ar-SOH), a subsequent activation was used to form highly reactive -Ar-SOCl groups nearly perpendicular to the monolayer.

View Article and Find Full Text PDF