Publications by authors named "Andrew Camardo"

Purpose: To assess the potential adjunctive role of a 3D electromagnetic (EM) navigational system for use in above-knee vessels afflicted with peripheral artery disease (PAD). Peripheral artery disease can be challenging to operators encountering significant vessel tortuosity, calcium, and stenoses, which may require prolonged procedure times and excessive use of nephrotoxic iodinated contrast when performed with conventional fluoroscopy.

Materials And Methods: Following appropriate ethical oversight, five 3D-printed bench phantoms modeling tortuous calcified PAD were created based on source CTA (computed tomography angiography) data sets from real patients.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanosized vesicles that carry cell-specific biomolecular information. Our previous studies showed that adult human bone marrow mesenchymal stem cell (BM-MSC)-derived EVs provide antiproteolytic and proregenerative effects in cultures of smooth muscle cells (SMCs) derived from an elastase-infused rat abdominal aortic aneurysm (AAA) model, and this is promising toward their use as a therapeutic platform for naturally irreversible elastic matrix aberrations in the aortic wall. Since systemically administered EVs poorly home into sites of tissue injury, disease strategies to improve their affinity toward target tissues are of great significance for EV-based treatment strategies.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAAs), a prototypic proteolytic cardiovascular disorder, are localized expansions of the aortal wall. Chronically upregulated and overexpressed proteases irreversibly degrade and disrupt the elastic matrix, which provides stretch and recoil properties to the aortal wall. Adult vascular smooth muscle cells are inherently unable to produce sufficient elastin to form new elastic fibers to naturally repair the aortal wall and the AAA continues to grow until fatal rupture.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAA) are characterized by matrix remodeling, elastin degradation, absence of nitric oxide (NO) signaling, and inflammation, influencing smooth muscle cell (SMC) phenotype and gene expression. Little is known about the biomolecular release and intrinsic biomechanics of human AAA-SMCs. NO delivery could be an attractive therapeutic strategy to restore lost functionality of AAA-SMCs by inhibiting inflammation and cell stiffening.

View Article and Find Full Text PDF

Growth of abdominal aortic aneurysms (AAA), localized aortal wall expansions, is driven by the disruption and subsequent loss of aortal wall elastic fibers by matrix metalloproteases (MMPs). Since elastic fibers do not naturally regenerate or repair, arresting/reversing AAA growth has not been possible. Previously, we showed utility of doxycycline (DOX), an MMP inhibitor drug, to stimulate elastic matrix neoassembly and crosslinking at low microgram per milliliter doses in addition to inhibiting MMPs.

View Article and Find Full Text PDF

Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer-initiating cells, and clear viral infections. However, few reports describe a natural product that stimulates NK cell IFN-γ production and unravel a mechanism of action.

View Article and Find Full Text PDF