Publications by authors named "Andrew C Zannettino"

Background: This study aimed to examine the performance of machine learning algorithms for the prediction of discharge within 12 and 24 h to produce a measure of readiness for discharge after general surgery.

Methods: Consecutive general surgery patients at two tertiary hospitals, over a 2-year period, were included. Observation and laboratory parameter data were stratified into training, testing and validation datasets.

View Article and Find Full Text PDF

Multiple myeloma is a fatal plasma cell malignancy that is reliant on the bone marrow microenvironment. The bone marrow is comprised of numerous cells of mesenchymal and hemopoietic origin. Of these, macrophages have been implicated to play a role in myeloma disease progression, angiogenesis, and drug resistance; however, the role of macrophages in myeloma disease establishment remains unknown.

View Article and Find Full Text PDF

Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive.

View Article and Find Full Text PDF

The proliferation, differentiation, adhesion, and migration of hematopoietic stem and progenitor cells (HSPCs) are dependent upon bone marrow stromal cells (BMSCs). In this study, we found that human primitive HSPCs (CD34CD38), but not lineage-committed hematopoietic cell populations, express the tyrosine kinase receptors EphA5 and EphA7. Moreover, we found that the ephrinA5 ligand, the high-affinity binding partner of EphA5 and EphA7, is highly expressed by primary human BMSCs.

View Article and Find Full Text PDF

The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter.

View Article and Find Full Text PDF

Desmogleins (DSG) are a family of cadherin adhesion proteins that were first identified in desmosomes and provide cardiomyocytes and epithelial cells with the junctional stability to tolerate mechanical stress. However, one member of this family, DSG2, is emerging as a protein with additional biological functions on a broader range of cells. Here we reveal that DSG2 is expressed by non-desmosome-forming human endothelial progenitor cells as well as their mature counterparts [endothelial cells (ECs)] in human tissue from healthy individuals and cancer patients.

View Article and Find Full Text PDF

Histone three lysine 27 (H3K27) methyltransferase enhancer of zeste homolog 2 (EZH2) is a critical epigenetic modifier, which regulates gene transcription through the trimethylation of the H3K27 residue leading to chromatin compaction and gene repression. EZH2 has previously been identified to regulate human bone marrow-derived mesenchymal stem cells (MSC) lineage specification. MSC lineage specification is regulated by the presence of EZH2 and its H3K27me3 modification or the removal of the H3K27 modification by lysine demethylases 6A and 6B (KDM6A and KDM6B).

View Article and Find Full Text PDF

Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone.

View Article and Find Full Text PDF

Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia offers treatment opportunities, exemplified by the development of compounds that target hypoxic regions within tumors. Evofosfamide (TH-302) is a prodrug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide mustard (Br-IPM).

View Article and Find Full Text PDF

Twist-1 encodes a basic helix-loop-helix transcription factor, known to contribute to mesodermal and skeletal tissue development. We have reported previously that Twist-1 maintains multipotent human bone marrow-derived mesenchymal stem/stromal cells (BMSC) in an immature state, enhances their life-span, and influences cell fate determination. In this study, human BMSC engineered to express high levels of Twist-1 were found to express elevated levels of the chemokine, CXCL12.

View Article and Find Full Text PDF

Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of malignant plasma cells within the bone marrow. We have previously identified pituitary tumour transforming gene 1 (Pttg1) as a gene that is significantly upregulated in the haematopoietic compartment of the myeloma-susceptible C57BL/KaLwRij mouse strain, when compared with the myeloma-resistant C57BL/6 mouse. Over-expression of PTTG1 has previously been associated with malignant progression and an enhanced proliferative capacity in solid tumours.

View Article and Find Full Text PDF

Elevated expression of the cell adhesion molecule N-cadherin (cadherin 2, type 1, N-cadherin (neuronal); CDH2) is associated with poor prognosis in newly-diagnosed multiple myeloma (MM) patients. In this study, we investigated whether targeting of N-cadherin represents a potential treatment for the ~50% of MM patients with elevated N-cadherin. Initially, we stably knocked-down N-cadherin in the mouse MM plasma cell (PC) line 5TGM1 to assess the functional role of N-cadherin in MM pathogenesis.

View Article and Find Full Text PDF

The tyrosine kinase receptor, EphB4, mediates cross-talk between stromal and hematopoietic populations during bone remodeling, fracture repair and arthritis, through its interactions with the ligand, ephrin-B2. This study demonstrated that transgenic EphB4 mice (EphB4 Tg), over-expressing EphB4 under the control of collagen type-1 promoter, exhibited higher frequencies of osteogenic cells and hematopoietic stem/progenitor cells (HSC), correlating with a higher frequency of long-term culture-initiating cells (LTC-IC), compared with wild type (WT) mice. EphB4 Tg stromal feeder layers displayed a greater capacity to support LTC-IC in vitro, where blocking EphB4/ephrin-B2 interactions decreased LTC-IC output.

View Article and Find Full Text PDF

Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest.

View Article and Find Full Text PDF

Purpose: Osteosarcoma is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of osteosarcoma, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based.

View Article and Find Full Text PDF

Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression.

Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro.

View Article and Find Full Text PDF

The plasma cell malignancy multiple myeloma (MM) is unique amongst haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BKM120 (Buparlisib, Novartis) is a PI3K inhibitor that is currently undergoing clinical evaluation in several tumour settings.

View Article and Find Full Text PDF

Adipocytes (AdCs) and osteoblasts (OBs) are derived from mesenchymal stem cells (MSCs) and differentiation toward either lineage is both mutually exclusive and transcriptionally controlled. Recent studies implicate the mammalian target of rapamycin (mTOR) pathway as important in determining MSC fate, with inhibition of mTOR promoting OB differentiation and suppressing AdC differentiation. mTOR functions within two distinct multiprotein complexes, mTORC1 and mTORC2, each of which contains the unique adaptor protein, raptor or rictor, respectively.

View Article and Find Full Text PDF

Background/aim: Drozitumab is a fully human agonistic monoclonal antibody that binds to death receptor DR5 and induces apoptosis. However, drozitumab resistance is a major obstacle limiting anticancer efficacy.

Materials And Methods: We examined the potential for the chemotherapeutic agent doxorubicin to overcome resistance against drozitumab-resistant breast cancer cells both in vitro and in vivo.

View Article and Find Full Text PDF

The plasma cell malignancy multiple myeloma (MM) is unique among haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt/mTOR pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BEZ235 is a dual pan class I PI3K and mTOR inhibitor that is currently undergoing clinical evaluation in several tumour settings.

View Article and Find Full Text PDF

Multiple myeloma (MM), a hematological malignancy characterized by the clonal growth of malignant plasma cells (PCs) in the bone marrow, is preceded by the benign asymptomatic condition, monoclonal gammopathy of undetermined significance (MGUS). Several genetic abnormalities have been identified as critical for the development of MM; however, a number of these abnormalities are also found in patients with MGUS, indicating that there are other, as yet unidentified, factors that contribute to the onset of MM disease. In this study, we identify a Samsn1 gene deletion in the 5TGM1/C57BL/KaLwRij murine model of myeloma.

View Article and Find Full Text PDF

Osteoprotegerin (OPG) is a secreted member of the TNF receptor superfamily, which binds to the receptor activator of nuclear factor κB ligand (RANKL) and inhibits osteoclast activity and bone resorption. Systemic administration of recombinant OPG was previously shown to inhibit tumor growth in bone and to prevent cancer-induced osteolysis. In this study, we examined the effect of OPG, when produced locally by breast cancer cells located within bone, using a mouse model of osteolytic breast cancer.

View Article and Find Full Text PDF