Molecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(μ3-I)2, 4, respectively.
View Article and Find Full Text PDFDinuclear Cu(I) and Ag(I) complexes, Cu2[(2,6-Me2C6H3N)2C(H)]2, 1, Ag2[(2,6-Me2C6H3N)2C(H)]2, 2, Cu2[2,6-(i)Pr2C6H3N)2C(H)]2, 3, and Ag2[(2,6-(i)Pr2C6H3N)2C(H)]2, 4, were synthesized from reactions of [Cu(NCCH3)4][PF6] with Na[(2,6-R2C6H3N)2C(H)] and AgO2CCH3 with [Et3NH][(2,6-R2C6H3N2C(H)], R = Me, (i)Pr. Carbon disulfide was observed to insert into the metal-nitrogen bonds of 1 to produce Cu4[CS2(2,6-Me2C6H3NC(H)═NC6H3Me2)]4, 5, with a Cu4S8 core, which represents a rare transformation of dinuclear to tetranuclear species. Insertion is also observed with 2 and CS2, with the product likely being polymeric, 6.
View Article and Find Full Text PDF