Spontaneous tumor regression following bacterial infection has been observed for hundreds of years. These observations along with anecdotal medical findings in 1890s led to the development of Coley's "toxins," consisting of killed Streptococcus pyogenes and Serratia marcescens bacteria, as the first cancer immunotherapy. The use of this approach, however, was not widely accepted at the time especially after the introduction of radiation therapy as a treatment for cancer in the early 1900s.
View Article and Find Full Text PDFThe cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies.
View Article and Find Full Text PDFInfection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients.
View Article and Find Full Text PDFRecent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies.
View Article and Find Full Text PDFRecent advances in cancer genomics have opened up unlimited potential for treating cancer by directly targeting culprit genes. However, novel delivery methods are needed in order for this potential to be translated into clinically viable treatments for patients. Magnetic nanoparticle technology offers the potential to achieve selective and efficient delivery of therapeutic genes by using external magnetic fields, and also allows simultaneous imaging to monitor the delivery in vivo.
View Article and Find Full Text PDFRNA interference (RNAi) is a potent and specific mechanism for eliminating the mRNA of specific genes. This gene silencing mechanism occurs naturally and is highly conserved from plants to human cells, holding promise for functional genomics and for revolutionizing medicine due to its unlimited potential to treat genetic, epigenetic, and infectious disease. However, efforts to unleash the enormous potential of RNAi have met with significant challenges.
View Article and Find Full Text PDFCequent Pharmaceuticals, Inc. is a recently established biopharmaceutical company that aims to develop clinically compatible therapies based on RNAi, a potent gene-silencing mechanism discovered in 1998. The company's proprietary technology, transkingdom RNAi (tkRNAi), uses nonpathogenic bacteria to produce and deliver shRNA into target cells to induce RNAi.
View Article and Find Full Text PDFBiotechnol Genet Eng Rev
April 2011
Since its discovery in 1998 RNA interference (RNAi), a potent and highly selective gene silencing mechanism, has revolutionized the field of biological science. The ability of RNAi to specifically down-regulate the expression of any cellular protein has had a profound impact on the study of gene function in vitro. This property of RNAi also holds great promise for in vivo functional genomics and interventions against a wide spectrum of diseases, especially those with "undruggable" therapeutic targets.
View Article and Find Full Text PDFPreviously, we reported that normal colonocytes produce the memory CD4(+) T cell-directed chemokine MIP-3alpha, and that epithelial MIP-3alpha levels are elevated in inflammatory bowel disease. Interestingly, the unique receptor for MIP-3alpha, CCR6, is expressed by a variety of cell types including colonocytes, suggesting that MIP-3alpha may regulate additional biological activities in the intestine. The aim of this study was to determine whether MIP-3alpha can induce intestinal epithelial cell proliferation and to examine the signaling mechanisms that mediate this response.
View Article and Find Full Text PDFBackground: Helicobacter pylori infection increases the risk of gastric carcinogenesis. The aim of the present study was to determine whether H. pylori could up-regulate the expression of the epidermal growth factor receptor (EGFR), a critical gene in the carcinogenic process.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2007
A characteristic feature of human inflammatory bowel disease, particularly Crohn's disease, is the presence of activated CD4(+) T cells. Recently, we have shown that colonic epithelial cell production of macrophage inflammatory protein (MIP)-3alpha, a CD4 T cell-directed chemokine, is elevated in inflammatory bowel disease. However, the functional relevance of MIP-3alpha production during intestinal inflammation is poorly understood.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2005
Epithelial neutrophil-activating peptide-78 (ENA-78), a member of the CXC chemokine subfamily, is induced by inflammatory cytokines in human colonic enterocyte cell lines and increased in the colon of patients with inflammatory bowel disease (IBD). Lipopolysaccharide-induced CXC-chemokine (LIX) was recently identified as the murine homolog of ENA-78. Here we show that, similar to ENA-78, inflammatory cytokine stimulation of a murine colonic epithelial cell line, MODE-K, results in increased LIX expression.
View Article and Find Full Text PDFFlagellin, a specific ligand for Toll-like receptor 5 (TLR5), is a molecular pattern associated with several bacterial species. Recently, TLR signaling has been intensively studied. However, TLR5-associated signaling in non-transformed colonocytes has not been investigated.
View Article and Find Full Text PDFWe have previously shown that colonic epithelial cells are a major site of MIP-3alpha production in human colon and that enterocyte MIP-3alpha protein levels are elevated in inflammatory bowel disease. The aim of this study was to determine the molecular mechanisms regulating MIP-3alpha gene transcription in Caco-2 intestinal epithelial cells. We show that a kappaB element at nucleotides -82 to -93 of the MIP-3alpha promoter binds p50/p65 NF-kappaB heterodimers and is a major regulator of basal and interleukin-1beta (IL-1beta)-mediated gene activation.
View Article and Find Full Text PDFBackground & Aims: Clostridium difficile toxin A causes mitochondrial dysfunction resulting in generation of oxygen radicals and adenosine triphosphate (ATP) depletion. We investigated whether mitochondrial dysfunction is involved in nuclear factor kappaB (NF-kappaB) activation and interleukin (IL)-8 release from toxin A-exposed enterocytes.
Methods: NF-kappaB activation and IL-8 release in response to toxin A were correlated with reactive oxygen intermediate (ROI) generation and ATP production in HT-29 monolayers or HT-29 cells exposed to ethidium bromide (EB) to inhibit mitochondrial function.