Publications by authors named "Andrew C Hillier"

Single walled carbon nanotubes (SWCNT) have recently been demonstrated as modular, near-infrared (nIR) probes for reporting hydrolase activity; however, these have been limited to naturally amphipathic substrate targets used to noncovalently functionalize the hydrophobic nanoparticles. Many relevant substrate targets are hydrophobic (such as recalcitrant biomass) and pose a challenge for modular functionalization. In this work, a facile mechanochemistry approach was used to couple insoluble substrates, such as lignin, to SWCNT using l-lysine amino acid as a linker and tip sonication as the mechanochemical energy source.

View Article and Find Full Text PDF

Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity.

View Article and Find Full Text PDF

Membrane-active molecules are of great importance to drug delivery and antimicrobials applications. While the ability to prototype new membrane-active molecules has improved greatly with the advent of automated chemistries and rapid biomolecule expression techniques, testing methods are still limited by throughput, cost, and modularity. Existing methods suffer from feasibility constraints of working with pathogenic living cells and by intrinsic limitations of model systems.

View Article and Find Full Text PDF

Hydrolase co-therapies that degrade biofilm extracellular polymeric substances (EPS) allow for a better diffusion of antibiotics and more effective treatment; current methods for quantitatively measuring the enzymatic degradation of EPS are not amendable to high-throughput screening. Herein, we present biofilm EPS-functionalized single-walled carbon nanotube (SWCNT) probes for rapid screening of hydrolytic enzyme selectivity and activity on EPS. The extent of biofilm EPS degradation is quantified by monitoring the quenching of the SWCNT fluorescence.

View Article and Find Full Text PDF

Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation.

View Article and Find Full Text PDF

We demonstrate how distinct surface plasmon resonance modes on opposite sides of a metal-coated grating can be coupled across the metal film. This coupling occurs by matching the resonance conditions on each side of the grating by tuning the refractive index directly adjacent to the metal film. In the first example, we deposited a high refractive index layer of tin oxide on top of the grating to red-shift the front side surface plasmon until it coupled with the backside surface plasmon across a semitransparent ∼45 nm thin silver grating.

View Article and Find Full Text PDF

Bismuth-based halide perovskites have been proposed as a potential nontoxic alternative to lead halide perovskites; however, they have not realized suitable performance. Their poor performance has been attributed to substandard film morphologies and too wide of a band gap for many applications. Herein we used a two-step deposition procedure to convert BiI thin films into ABiI (A = FA, MA, Cs, or Rb), which resulted in a substantial improvement in film morphology, a larger band gap, and greater compositional tunability compared toresults when using aconventional single-step deposition technique.

View Article and Find Full Text PDF

Experimental data for waveguide-coupled surface-plasmon-polariton (SPP) cones generated from dielectric waveguides is presented. The results demonstrate a simpler route to collect plasmon waveguide resonance (i.e.

View Article and Find Full Text PDF

This paper reports a tunable photonic device that incorporates a thin layer of phase-change material, GeSbTe (GST), in a photonic crystal (PC) structure. The PC structure is based on a one-dimensional grating waveguide with a metal cladding. The metal-cladded PC structure supports a guided-mode resonance (GMR) that selectively absorbs light at a particular wavelength.

View Article and Find Full Text PDF

We report a method for controlling the lattice geometry of monodisperse colloidal crystals formed by confined convective self-assembly on a substrate patterned with a chirped surface relief grating. Chirped gratings were fabricated using laser interference lithography and a curved mirror reflector to create photoresist patterns with pitch values ranging from ∼500 to >10 000 nm spread over a planar surface. These surface nanostructures are shown to guide the formation of various lattice geometries not normally found via colloidal assembly on planar surfaces.

View Article and Find Full Text PDF

DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface.

View Article and Find Full Text PDF

This paper presents the fabrication methodology of a linear variable photonic crystal (PC) filter with narrowband reflection that varies over a broad spectral range along the length of the filter. The key component of the linear variable PC filter is a polymer surface-relief grating whose period changes linearly as a function of its position on the filter. The grating is fabricated using a nanoreplica molding process with a wedge-shaped elastomer mold.

View Article and Find Full Text PDF

Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step.

View Article and Find Full Text PDF

We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement.

View Article and Find Full Text PDF

The performance of organic photovoltaic devices is improving steadily and efficiencies have now exceeded 10%. However, the incident solar spectrum still largely remains poorly absorbed. To reduce optical losses, we employed a microlens array (MLA) layer on the side of the glass substrate facing the incident light; this approach does not interfere with the processing of the active-layer.

View Article and Find Full Text PDF

Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers.

View Article and Find Full Text PDF

Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation.

View Article and Find Full Text PDF

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer.

View Article and Find Full Text PDF

We report grating-coupled surface plasmon resonance measurements involving the use of dispersion images to interpret the optical response of a metal-coated grating. Optical transmission through a grating coated with a thin, gold film exhibits features characteristic of the excitation of surface plasmon resonance due to coupling with the nanostructured grating surface. Evidence of numerous surface plasmon modes associated with coupling at both front (gold/air) and back (gold/substrate) grating interfaces is observed.

View Article and Find Full Text PDF

″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions.

View Article and Find Full Text PDF

In this paper, we describe experimental and modeling results that illucidate the nature of coupling between surface plasmon polaritons in a thin silver film with the molecular resonance of a zinc phthalocyanine dye film. This coupling leads to several phenomena not generally observed when plasmons are coupled to transparent materials. The increased absorption coefficient near a molecular resonance leads to a discontinuity in the refractive index, which causes branching of the plasmon resonance condition and the appearance of two peaks in the p-polarized reflectance spectrum.

View Article and Find Full Text PDF

Surface plasmon resonance enhanced transmission through metal-coated nanostructures represents a highly sensitive yet simple method for quantitative measurement of surface processes and is particularly useful in the development of thin film and adsorption sensors. Diffraction-induced surface plasmon excitation can produce enhanced transmission at select regions of the visible spectrum, and wavelength shifts associated with these transmission peaks can be used to track adsorption processes and film formation. In this report, we describe a simple optical microscope-based method for monitoring the first-order diffracted peaks associated with enhanced transmission through a gold-coated diffraction grating.

View Article and Find Full Text PDF

We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy.

View Article and Find Full Text PDF

A surface plasmon resonance imaging system combined with a multielement electrode array is described. An optical system with shaping optics is used to direct a wedge of light onto a gold-coated sample. The reflected light is detected in the form of an angle-spread image of the surface, with one direction denoting a variable incident angle and the other showing a span of locations along one lateral direction of the sample surface.

View Article and Find Full Text PDF

We report the construction and testing of a chirped diffraction grating, which serves as a substrate for surface plasmon-enhanced optical transmission. This grating possesses a spatial variation in both pitch and amplitude along its surface. It was created by plasma oxidation of a curved poly(dimethoxysilane) sheet, which resulted in nonuniform buckling along the polymer surface.

View Article and Find Full Text PDF