Publications by authors named "Andrew C Eagar"

The purpose of this study was to examine bacterial colonization of different types of microplastics through time in a freshwater ecosystem. Microplastics are persistent pollutants in aquatic ecosystems. Bacteria readily colonize microplastic surfaces and may contribute to their degradation, but the taxa involved, and their degradative abilities, differ based on factors such as microplastic chemistry, plastic age, and specific ecosystem types.

View Article and Find Full Text PDF

Green roof soils are usually engineered for purposes other than urban biodiversity, which may impact their fungal communities, and in turn impact the health of plants in the urban ecosystem. We examined the drivers of fungal diversity and community composition in soil of green roofs and adjacent ground-level green spaces in three Midwestern USA cities-Chicago, Cleveland, and Minneapolis. Overall, fungal communities on green roofs were more diverse than ground-level green spaces and were correlated with plant cover (positively) and roof age (negatively) rather than abiotic soil properties.

View Article and Find Full Text PDF

Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability.

View Article and Find Full Text PDF