Publications by authors named "Andrew C A Wan"

Cell-adhesive factors mediate adhesion of cells to substrates via peptide motifs such as the Arg-Gly-Asp (RGD) sequence. With the onset of sustainability issues, there is a pressing need to find alternatives to animal-derived cell-adhesive factors, especially for cell-cultivated food applications. In this paper, we show how data mining can be a powerful approach toward identifying fungal-derived cell-adhesive proteins and present a method to isolate and utilize these proteins as extracellular matrices (ECM) to support cell adhesion and culture in 3D.

View Article and Find Full Text PDF

Organotypic skin cultures represent in vitro models of skin which can be used for disease modeling, tissue engineering, and screening applications. Non-human collagen is currently the gold standard material used for the construction of the supporting matrix, however, its clinical applications are limited due to its xenogeneic origin. We have developed a novel peptide hydrogel-based skin construct that shows a pluristratified epidermis, basement membrane, and dermal compartment after 3 weeks of in vitro culture.

View Article and Find Full Text PDF

Androgenetic alopecia (AGA) is a prevalent hair loss condition in males that develops due to the influence of androgens and genetic predisposition. With the aim of elucidating genes involved in AGA pathogenesis, we modelled AGA with three-dimensional culture of keratinocyte-surrounded dermal papilla (DP) cells. We co-cultured immortalised balding and non-balding human DP cells (DPCs) derived from male AGA patients with epidermal keratinocyte (NHEK) using multi-interfacial polyelectrolyte complexation technique.

View Article and Find Full Text PDF

In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) has become a global public health threat. One of the major causes of AMR development is the accumulation of low levels of antimicrobials in the environment. To tackle this problem, novel antimicrobial agents that do not leave active residues after treatment are needed.

View Article and Find Full Text PDF

Clinical applications of human pluripotent stem cells (PSCs) are limited by the lack of chemically well-defined scaffolds for cell expansion, differentiation, and implantation. In this study, we systematically screened various self-assembling hexapeptides to identify the best matrix for long-term 3D PSC culture. Lysine-containing Ac-ILVAGK-NH hydrogels maintained best the pluripotency of human embryonic and induced PSCs even after 30 passages.

View Article and Find Full Text PDF

At present, most drug screening efforts employ bulk cancer cell populations, which may lead to selection of the more drug-resistant cancer stem cells (CSCs). However, drug screening using CSCs has been limited, mainly owing to the difficulty of their isolation. This article discusses how methods of reprogramming cancer cells to primitive cancer cell states, such as transcription factor reprogramming, epithelial-mesenchymal transition (EMT), conditional reprogramming, and hypoxia, may approach the CSC state and thus be relevant for drug screening purposes.

View Article and Find Full Text PDF

Lineage specification is an essential process in stem cell fate, tissue homeostasis and development. Microenvironmental cues provide direct and selective extrinsic signals to regulate lineage specification of stem cells. Microenvironmental milieu consists of two essential components, one being extracellular matrix (ECM) as the substratum, while the other being cell secreted exosomes and growth factors.

View Article and Find Full Text PDF

Cationic bolaamphiphile polymers had been previously studied as efficient delivery system for the delivery of proteins with relatively low toxicity. Here, the authors investigate the use of a protein delivery system based on a cationic bolaamphiphile to sensitize cancer cells toward apoptosis-inducing drugs as a novel approach for cancer therapy. The authors demonstrates the efficacy of the system by two strategies.

View Article and Find Full Text PDF

Cell-based therapies for cartilage repair are continually being developed to treat osteoarthritis. The cells are either introduced directly by intra-articular injection or via a cell-seeded matrix scaffold. Here, poly(vinylalcohol)-based membranes are developed to be used for mesenchymal stem cell implantation in cartilage repair procedures, having controllable physicochemical properties such as porosity, mechanical strength, and permeability, and a unique self-sealing property.

View Article and Find Full Text PDF

Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies.

View Article and Find Full Text PDF

Unlabelled: The use of human induced pluripotent stem cells (hiPSCs) for clinical tissue engineering applications requires expansion and differentiation of the cells using defined, xeno-free substrates. The screening and selection of suitable synthetic substrates however, is tedious, as their performance relies on the inherent material properties. In the present work, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth.

View Article and Find Full Text PDF
Article Synopsis
  • Pluripotent human embryonic stem cells (hESCs) are highlighted as a renewable source for regenerative medicine, necessitating scalable culture methods for cell propagation.
  • In this study, hESCs were encapsulated in calcium alginate microfibers, allowing for growth in small aggregates under controlled conditions, leading to successful cell expansion and maintenance of pluripotency across five passages.
  • The method demonstrated effective differentiation of the hESC line HUES7 into liver-like cells, indicating the potential of the alginate microfiber system for long-term, defined culture of pluripotent stem cells.
View Article and Find Full Text PDF

Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells.

View Article and Find Full Text PDF

Androgenetic alopecia (AGA) is a common heritable and androgen-dependent hair loss condition in men. Twelve genetic risk loci are known to date, but it is unclear which genes at these loci are relevant for AGA. Dermal papilla cells (DPCs) located in the hair bulb are the main site of androgen activity in the hair follicle.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different cell types (mesenchymal stem cells and chondrocytes) respond to various 3D environments for cartilage repair, focusing on the impact of aligned collagen type I in hydrogels.
  • Chondrocytes in a collagen-free matrix maintained a hyaline phenotype in clusters, while MSCs differentiated into a fibro-superficial zone-like type, emphasizing the importance of cell morphology in cartilage tissue engineering.
  • The research highlights that designing biodegradable matrices that cater to the specific needs of different cell types is crucial for effectively regenerating healthy articular cartilage.
View Article and Find Full Text PDF

Cells are spatially patterned in 3D space to allow an intricately orchestrated exchange of signals that regulate their migration, proliferation, differentiation, and death. In recent years cellular self-assembly has emerged as an attractive method to achieve the complexity of organ structures, where the essential cell types co-cultured under carefully defined conditions in vitro have been shown to give rise to organoids such as the optic cup, brain, intestine, liver, and kidney. In view of these developments, what would the revised role of biomaterial-based technologies be, or do they retain any role at all? This Opinion article maintains that biomaterials will not only retain their value but will also synergize with organoid technologies in recapitulating cell-cell interactions.

View Article and Find Full Text PDF

In highly proliferative cancer cells, energy is predominantly produced by a high rate of glycolysis, followed by lactic acid fermentation, despite the availability of oxygen - an observation known as the Warburg effect. As a consequence, cells employing this glycolytic pathway require high uptake of glucose and increased metabolic rates to maintain their proliferation. It has been hypothesized that by blocking glucose uptake using modified glucose molecules, apoptosis in the cancer cells can be induced.

View Article and Find Full Text PDF

A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies.

View Article and Find Full Text PDF

Liver tissue engineering requires a suitable cell source, methodologies to assemble the cells within their niche microenvironments in a spatially defined manner, and vascularization of the construct in vivo for maintenance of hepatocyte viability and function. Recently, we have developed methods of encapsulating cells within separate domains in multi-component hydrogel fibers and methods of assembling fibers to form 3D-patterned tissue constructs. In the present work, we have combined these approaches to encapsulate hepatocytes and endothelial cells within their specific niches, and to assemble them into endothelialized liver tissue constructs.

View Article and Find Full Text PDF

Clinical and industrial applications of human pluripotent stem cells (hPSC) require large amounts of cells that have been expanded under defined conditions. Labor-intensive techniques and ill-defined or expensive compounds and substrates are not applicable. Here we describe a chemically defined synthetic substrate consisting of polysulfone (PSF) membranes coated with polymerized 3,4-dihydroxy-l-phenylalanine (DOPA).

View Article and Find Full Text PDF

In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid-tyramine (HA-Tyr) during the HRP-mediated crosslinking reaction.

View Article and Find Full Text PDF

A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However, standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium, imposing a significant obstacle to clinical translation. Here, we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation.

View Article and Find Full Text PDF