The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms.
View Article and Find Full Text PDFGenes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells.
View Article and Find Full Text PDFA CO(2)-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO(2) concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO(2) (≤100 ppm). CCM induction 30 to 180 min post-CO(2) deprivation coincides with statistically significant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C.
View Article and Find Full Text PDFBackground: Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced.
View Article and Find Full Text PDF