Publications by authors named "Andrew Breen"

Medium- and high-entropy alloys are an emerging class of materials that can exhibit outstanding combinations of strength and ductility for engineering applications. Computational simulations have suggested the presence of short-range order (SRO) in these alloys, and recent experimental evidence is also beginning to emerge. Unfortunately, the difficulty in quantifying the SRO under different heat treatment conditions has generated much debate on the atomic preferencing and implications of SRO on mechanical properties.

View Article and Find Full Text PDF

The CAMECA Invizo 6000 atom probe microscope uses ion optics that differ significantly from the local electrode atom probe (LEAP). It uses dual antiparallel deep ultraviolet lasers, a flat counter electrode, and a series of accelerating and decelerating lenses to increase the field-of-view of the specimen without reducing the mass resolving power. In this work we characterise the performance of the Invizo 6000 using three material case studies: a model Al-Mg-Si alloy, a commercially-available Ni-based superalloy, and a Zr alloy, using a combination of air and vacuum-transfer between instruments.

View Article and Find Full Text PDF
Article Synopsis
  • FUSIC haemodynamics (HD) is a new module from the Intensive Care Society aimed at using ultrasound for comprehensive assessments in critical care settings.
  • It focuses on ten key clinical questions regarding the heart and blood vessels to identify patient issues like stroke volume abnormalities and valve problems.
  • The module is designed to help healthcare providers make quick decisions for acutely ill patients, and the article covers the rationale for its use and the training needed to implement it effectively.
View Article and Find Full Text PDF

The operating temperature is a critical parameter in atom probe tomography experiments. It affects the spatial precision, mass resolving power and other key aspects of the field-evaporation process. Current commercially available atom probes operate at a minimum temperature of ∼25 K when measured at the specimen.

View Article and Find Full Text PDF

Thermal annealing temperature and time dictate the microstructure of semiconductor materials such as silicon nanocrystals (Si NCs). Herein, atom probe tomography (APT) and density functional theory (DFT) calculations are used to understand the thermal annealing temperature effects on Si NCs grown in a SiOmatrix and the distribution behaviour of boron (B) and phosphorus (P) dopant atoms. The APT results demonstrate that raising the annealing temperature promotes growth and increased P concentration of the Si NCs.

View Article and Find Full Text PDF

Volumetric crystal structure indexing and orientation mapping are key data processing steps for virtually any quantitative study of spatial correlations between the local chemical composition features and the microstructure of a material. For electron and X-ray diffraction methods it is possible to develop indexing tools which compare measured and analytically computed patterns to decode the structure and relative orientation within local regions of interest. Consequently, a number of numerically efficient and automated software tools exist to solve the above characterization tasks.

View Article and Find Full Text PDF

Objective: To review advance care planning (ACP) practice during the COVID-19 pandemic, evaluating the number of plans created, patient participation, cardiopulmonary resuscitation recommendations and variation between different population groups.

Design: A retrospective analysis and comparison of routinely collected data from electronic recommended summary plan for emergency care and treatment (ReSPECT) records documented in April 2020 and January to December 2019.

Setting/participants: Electronic ReSPECT documents completed for adult patients at a large, acute hospital trust in the UK.

View Article and Find Full Text PDF

Spatially accurate atom probe tomography reconstructions are vitally important when quantitative spatial measurements such as distances, volumes and morphologies etc. of nanostructural features are required information for the researcher. It is well known that the crystallographic information contained within the atom probe data of crystalline materials can be used to calibrate the tomographic reconstruction.

View Article and Find Full Text PDF

Current reconstruction methodologies for atom probe tomography (APT) contain serious geometric artifacts that are difficult to address due to their reliance on empirical factors to generate a reconstructed volume. To overcome this limitation, a reconstruction technique is demonstrated where the analyzed volume is instead defined by the specimen geometry and crystal structure as determined by transmission electron microscopy (TEM) and diffraction acquired before and after APT analysis. APT data are reconstructed using a bottom-up approach, where the post-APT TEM image is used to define the substrate upon which APT detection events are placed.

View Article and Find Full Text PDF

Objective: To determine long-term clinical outcomes in survivors of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus infections after hospitalization or intensive care unit admission.

Data Sources: Ovid MEDLINE, EMBASE, CINAHL Plus, and PsycINFO were searched.

Study Selection: Original studies reporting clinical outcomes of adult SARS and MERS survivors 3 months after admission or 2 months after discharge were included.

View Article and Find Full Text PDF

Boosting is a family of supervised learning algorithm that convert a set of weak learners into a single strong one. It is popular in the field of object tracking, where its main purpose is to extract the position, motion, and trajectory from various features of interest within a sequence of video frames. A scientific application explored in this study is to combine the boosting tracker and the Hough transformation, followed by principal component analysis, to extract the location and trace of grain boundaries within atom probe data.

View Article and Find Full Text PDF

Analysis and understanding of the role of hydrogen in metals is a significant challenge for the future of materials science, and this is a clear objective of recent work in the atom probe tomography (APT) community. Isotopic marking by deuteration has often been proposed as the preferred route to enable quantification of hydrogen by APT. Zircaloy-4 was charged electrochemically with hydrogen and deuterium under the same conditions to form large hydrides and deuterides.

View Article and Find Full Text PDF

The process of building an open source library of simulated field desorption maps for differently oriented synthetic tips of the face-centered cubic, body-centered cubic, and hexagonal-close-packed crystal structures using the open source software TAPSim is reported. Specifically, the field evaporation of a total set of 4 × 101 single-crystalline tips was simulated. Their lattices were oriented randomly to sample economically the fundamental zone of crystal orientations.

View Article and Find Full Text PDF

We present sample transfer instrumentation and integrated protocols for the preparation and atom probe characterization of environmentally-sensitive materials. Ultra-high vacuum cryogenic suitcases allow specimen transfer between preparation, processing and several imaging platforms without exposure to atmospheric contamination. For expedient transfers, we installed a fast-docking station equipped with a cryogenic pump upon three systems; two atom probes, a scanning electron microscope / Xe-plasma focused ion beam and a N2-atmosphere glovebox.

View Article and Find Full Text PDF

Atom probe tomography is known for its accurate compositional analysis at the nanoscale. However, the patterns created by successive hits on the single particle detector during experiments often contain complementary information about the specimen's crystallography, including structure and orientation. This information remains in most cases unexploited because it is, up to now, retrieved predominantly manually.

View Article and Find Full Text PDF

Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process.

View Article and Find Full Text PDF

Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail.

View Article and Find Full Text PDF

Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated.

View Article and Find Full Text PDF
Article Synopsis
  • Levosimendan is a drug that may help patients with sepsis by improving organ function, and a clinical trial was conducted to test its effectiveness compared to a placebo.
  • The study included 516 patients, with no significant differences found in mean organ dysfunction scores or 28-day mortality rates between the levosimendan and placebo groups.
  • However, patients receiving levosimendan had a lower success rate in weaning off mechanical ventilation and experienced more cases of a specific heart rhythm issue (supraventricular tachyarrhythmia) compared to those receiving placebo.
View Article and Find Full Text PDF

The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries.

View Article and Find Full Text PDF

The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice.

View Article and Find Full Text PDF

Picosecond-pulsed ultraviolet-laser (UV-355 nm) assisted atom probe tomography (APT) was used to analyze protective, thermally grown chromium oxides formed on stainless steel. The influence of analysis parameters on the thermal tail observed in the mass spectra and the chemical composition is investigated. A new parameter termed "laser sensitivity factor" is introduced in order to quantify the effect of laser energy on the extent of the thermal tail.

View Article and Find Full Text PDF

In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon.

View Article and Find Full Text PDF

Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained.

View Article and Find Full Text PDF

Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking.

View Article and Find Full Text PDF