Introduction: With the increasingly digital nature of biomedical data and as the complexity of analyses in medical research increases, the need for accurate information capture, traceability and accessibility has become crucial to medical researchers in the pursuance of their research goals. Grid- or Cloud-based technologies, often based on so-called Service Oriented Architectures (SOA), are increasingly being seen as viable solutions for managing distributed data and algorithms in the bio-medical domain. For neuroscientific analyses, especially those centred on complex image analysis, traceability of processes and datasets is essential but up to now this has not been captured in a manner that facilitates collaborative study.
View Article and Find Full Text PDFStud Health Technol Inform
October 2010
We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.
View Article and Find Full Text PDFStud Health Technol Inform
October 2008
There has been much research activity in recent times about providing the data infrastructures needed for the provision of personalised healthcare. In particular the requirement of integrating multiple, potentially distributed, heterogeneous data sources in the medical domain for the use of clinicians has set challenging goals for the healthgrid community. The approach advocated in this paper surrounds the provision of an Integrated Data Model plus links to/from ontologies to homogenize biomedical (from genomic, through cellular, disease, patient and population-related) data in the context of the EC Framework 6 Health-e-Child project.
View Article and Find Full Text PDF