The therapeutic and toxic effects of drugs are often generated through effects on distinct cell types in the body. Selective delivery of drugs to specific cells or cell lineages would, therefore, have major advantages, in particular, the potential to significantly improve the therapeutic window of an agent. Cells of the monocyte-macrophage lineage represent an important target for many therapeutic agents because of their central involvement in a wide range of diseases including inflammation, cancer, atherosclerosis, and diabetes.
View Article and Find Full Text PDFA novel series of HDAC inhibitors demonstrating class I subtype selectivity and good oral bioavailability is described. The compounds are potent enzyme inhibitors (IC₅₀ values less than 100 nM), and improved activity in cell proliferation assays was achieved by modulation of polar surface area (PSA) through the introduction of novel linking groups. Employing oral pharmacokinetic studies in mice, comparing drug levels in spleen to plasma, we selected compounds that were tested for efficacy in human tumor xenograft studies based on their potential to distribute into tumor.
View Article and Find Full Text PDFA novel p38 MAP kinase inhibitor structural class was discovered through selectivity screening. The rational analogue design, synthesis and structure-activity relationship of this series of bis-amide inhibitors is reported. The inhibition in vitro of human p38alpha enzyme activity and lipopolysaccharide-induced tumour necrosis factor-alpha release is described for the series.
View Article and Find Full Text PDFDivinyl ketones bearing alpha-ester or alpha-amide groups undergo Nazarov cyclizations to give cylopentenones using copper-bisoxazoline Lewis acid complexes with moderate to good ees. [reaction: see text]
View Article and Find Full Text PDF