Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation.
View Article and Find Full Text PDFThe development of a descriptor or descriptors that can relate the activity of catalysts to their physical properties is a major objective of catalysis research. In this study, we have found that the apparent activation energy for propene oxidation to acrolein over scheelite-structured, multicomponent, mixed metal oxides (Bi3FeMo2O12, Bi2Mo2.5W0.
View Article and Find Full Text PDFWe report the successful application of a templating approach employing ordered mesoporous carbon to the synthesis of BiVO4, Bi2Mo3O12, and Bi0.85V0.55Mo0.
View Article and Find Full Text PDFA two-step method has been developed for precise size and composition control of bimetallic Pt-In nanoparticles. Very small (1.62 nm) PtIn seed nanoparticles with 1:1 metal ratio were prepared in the absence of capping agents followed by growth of Pt on their surface in the presence of oleyl amine as reducing and stabilizing agent.
View Article and Find Full Text PDF