Publications by authors named "Andrew B Nobel"

Purpose: To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression-based "intrinsic" subtypes luminal A, luminal B, HER2-enriched, and basal-like.

Methods: A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated whether baseline gene expression could predict how well patients with eosinophilic esophagitis (EoE) would respond to topical corticosteroid treatment.
  • Although a group of 22 genes showed a strong correlation with treatment non-response in the initial analysis, this finding did not hold up in an independent validation cohort.
  • The researchers concluded that while their approach identified potential gene markers, further methods to predict treatment response are needed since the initial results were not confirmed in a larger group.
View Article and Find Full Text PDF

The relative proportion of RNA isoforms expressed for a given gene has been associated with disease states in cancer, retinal diseases, and neurological disorders. Examination of relative isoform proportions can help determine biological mechanisms, but such analyses often require a per-gene investigation of splicing patterns. Leveraging large public data sets produced by genomic consortia as a reference, one can compare splicing patterns in a data set of interest with those of a reference panel in which samples are divided into distinct groups, such as tissue of origin, or disease status.

View Article and Find Full Text PDF

Community detection is the process of grouping strongly connected nodes in a network. Many community detection methods for -weighted networks have a theoretical basis in a null model. Communities discovered by these methods therefore have interpretations in terms of statistical significance.

View Article and Find Full Text PDF

We propose a statistical boosting method, termed I-Boost, to integrate multiple types of high-dimensional genomics data with clinical data for predicting survival time. I-Boost provides substantially higher prediction accuracy than existing methods. By applying I-Boost to The Cancer Genome Atlas, we show that the integration of multiple genomics platforms with clinical variables improves the prediction of survival time over the use of clinical variables alone; gene expression values are typically more prognostic of survival time than other genomics data types; and gene modules/signatures are at least as prognostic as the collection of individual gene expression data.

View Article and Find Full Text PDF

Background: Expression quantitative trait loci (eQTL) analysis identifies genetic markers associated with the expression of a gene. Most existing eQTL analyses and methods investigate association in a single, readily available tissue, such as blood. Joint analysis of eQTL in multiple tissues has the potential to improve, and expand the scope of, single-tissue analyses.

View Article and Find Full Text PDF

The study of expression Quantitative Trait Loci (eQTL) is an important problem in genomics and biomedicine. While detection (testing) of eQTL associations has been widely studied, less work has been devoted to the estimation of eQTL effect size. To reduce false positives, detection methods frequently rely on linear modeling of rank-based normalized or log-transformed gene expression data.

View Article and Find Full Text PDF

Expression quantitative trait locus (eQTL) analyses identify genetic markers associated with the expression of a gene. Most up-to-date eQTL studies consider the connection between genetic variation and expression in a single tissue. Multi-tissue analyses have the potential to improve findings in a single tissue, and elucidate the genotypic basis of differences between tissues.

View Article and Find Full Text PDF

Multilayer networks are a useful way to capture and model multiple, binary or weighted relationships among a fixed group of objects. While community detection has proven to be a useful exploratory technique for the analysis of single-layer networks, the development of community detection methods for multilayer networks is still in its infancy. We propose and investigate a procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in multilayer networks.

View Article and Find Full Text PDF

We describe a simple, computationally efficient, permutation-based procedure for selecting the penalty parameter in LASSO-penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO.

View Article and Find Full Text PDF

Genomewide association studies (GWAS) sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple single-nucleotide polymorphisms (SNPs) simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations.

View Article and Find Full Text PDF

We investigate the maximal size of distinguished submatrices of a Gaussian random matrix. Of interest are submatrices whose entries have an average greater than or equal to a positive constant, and submatrices whose entries are well fit by a two-way ANOVA model. We identify size thresholds and associated (asymptotic) probability bounds for both large-average and ANOVA-fit submatrices.

View Article and Find Full Text PDF

Research in several fields now requires the analysis of datasets in which multiple high-dimensional types of data are available for a common set of objects. In particular, The Cancer Genome Atlas (TCGA) includes data from several diverse genomic technologies on the same cancerous tumor samples. In this paper we introduce Joint and Individual Variation Explained (JIVE), a general decomposition of variation for the integrated analysis of such datasets.

View Article and Find Full Text PDF

Motivation: DNA copy number gains and losses are commonly found in tumor tissue, and some of these aberrations play a role in tumor genesis and development. Although high resolution DNA copy number data can be obtained using array-based techniques, no single method is widely used to distinguish between recurrent and sporadic copy number aberrations.

Results: Here we introduce Discovering Copy Number Aberrations Manifested In Cancer (DiNAMIC), a novel method for assessing the statistical significance of recurrent copy number aberrations.

View Article and Find Full Text PDF

Background: Analysis of microarray experiments often involves testing for the overrepresentation of pre-defined sets of genes among lists of genes deemed individually significant. Most popular gene set testing methods assume the independence of genes within each set, an assumption that is seriously violated, as extensive correlation between genes is a well-documented phenomenon.

Results: We conducted a meta-analysis of over 200 datasets from the Gene Expression Omnibus in order to demonstrate the practical impact of strong gene correlation patterns that are highly consistent across experiments.

View Article and Find Full Text PDF

In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this "cryptic" transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S.

View Article and Find Full Text PDF

Unlabelled: PURPOSE To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression-based "intrinsic" subtypes luminal A, luminal B, HER2-enriched, and basal-like. METHODS A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen.

View Article and Find Full Text PDF

In this paper we define a hierarchical Bayesian model for microarray expression data collected from several studies and use it to identify genes that show differential expression between two conditions. Key features include shrinkage across both genes and studies, and flexible modeling that allows for interactions between platforms and the estimated effect, as well as concordant and discordant differential expression across studies. We evaluated the performance of our model in a comprehensive fashion, using both artificial data, and a "split-study" validation approach that provides an agnostic assessment of the model's behavior not only under the null hypothesis, but also under a realistic alternative.

View Article and Find Full Text PDF

Motivation: Gene expression Quantitative Trait Locus (eQTL) mapping measures the association between transcript expression and genotype in order to find genomic locations likely to regulate transcript expression. The availability of both gene expression and high-density genotype data has improved our ability to perform eQTL mapping in inbred mouse and other homozygous populations. However, existing eQTL mapping software does not scale well when the number of transcripts and markers are on the order of 10(5) and 10(5)-10(6), respectively.

View Article and Find Full Text PDF

Motivation: Gene-expression microarrays are currently being applied in a variety of biomedical applications. This article considers the problem of how to merge datasets arising from different gene-expression studies of a common organism and phenotype. Of particular interest is how to merge data from different technological platforms.

View Article and Find Full Text PDF
Article Synopsis
  • Gene-expression profiling studies of breast tumors have identified various prognostic profiles with limited gene overlap.
  • By analyzing a dataset of 295 breast cancer samples using five different gene-expression models, the study aimed to compare prediction outcomes for individual patients.
  • The results showed that most models had high concordance in predicting outcomes, indicating that despite differences in gene sets, four out of five models likely reflect common biological traits in breast cancer.
View Article and Find Full Text PDF

ChIPOTle (Chromatin ImmunoPrecipitation On Tiled arrays) takes advantage of two unique properties of ChIP-chip data: the single-tailed nature of the data, caused by specific enrichment but not specific depletion of genomic fragments; and the predictable enrichment of DNA fragments adjacent to sites of direct protein-DNA interaction. Implemented as a Microsoft Excel macro written in Visual Basic, ChIPOTle uses a sliding window approach that yields improvements in the identification of bona fide sites of protein-DNA interaction.

View Article and Find Full Text PDF

Motivation: In high-throughput genomic and proteomic experiments, investigators monitor expression across a set of experimental conditions. To gain an understanding of broader biological phenomena, researchers have until recently been limited to post hoc analyses of significant gene lists.

Method: We describe a general framework, significance analysis of function and expression (SAFE), for conducting valid tests of gene categories ab initio.

View Article and Find Full Text PDF