Publications by authors named "Andrew B Holmes"

Selenium contamination is a critical global issue across numerous industries. Industrial waters such as mine-impacted water (MIW) can contain toxic levels of selenate, in addition to varying concentrations of many different dissolved species from the underlying strata, such as sulfate, carbonate, nitrate, organic matter, and many dissolved metals. The removal of selenate from MIW is desired, due to selenate's acute and chronic toxicity in aquatic ecosystems at elevated concentrations.

View Article and Find Full Text PDF

The development of nanoparticle-based soil remediation techniques is hindered by the lack of accurate in situ nanoparticle (NP) monitoring and characterization methods. Spectral induced polarization (SIP), a noninvasive geophysical technique, offers a promising approach to detect and quantify NPs in porous media. However, its successful implementation as a monitoring tool requires an understanding of the polarization mechanisms, the governing NP-associated SIP responses and their dependence on the stabilizing coatings that are typically used for NPs deployed in environmental applications.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the environmental impact of nanoscale titanium dioxide (n-TiO) and the need for a quick and accurate way to measure its concentration on-site.
  • Traditional methods like ICP-MS are effective but come with challenges, particularly with harmful chemicals and limitations for mobile use.
  • The research introduces a portable spectrophotometry technique that can more accurately measure n-TiO in wastewater, especially in the presence of natural organic matter, providing real-time data that can help assess environmental and health risks associated with nanomaterials.
View Article and Find Full Text PDF

Background: Method evaluation of new assays for the detection of antiphospholipid antibodies (aPL) such as anti-cardiolipin (aCL) or anti-β2-glycoprotein I (aβ2-GPI) is challenging, as no internationally accepted reference material is available yet. Besides a lack of standardization, unacceptable inter-laboratory comparability of established tests is regularly observed. Owing to the absence of a commonly accepted reference standard, the evaluation of two research surface plasmon resonance (SPR) biosensor assays was performed using statistical methods from latent class analysis (LCA).

View Article and Find Full Text PDF

Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line.

View Article and Find Full Text PDF

The intramolecular Diels-Alder reaction has been used as a powerful method to access the tricyclic core of the eunicellin natural products from a number of 9-membered-ring precursors. The endo/exo selectivity of this reaction can be controlled through a remarkable organocatalytic approach, employing MacMillan's imidazolidinone catalysts, although the mechanistic origin of this selectivity remains unclear. We present a combined experimental and density functional theory investigation, providing insight into the effects of medium-ring constraints on the organocatalyzed intramolecular Diels-Alder reaction to form the isobenzofuran core of the eunicellins.

View Article and Find Full Text PDF

This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.

View Article and Find Full Text PDF

By designing dyes with fluoroalkyl groups, the optical and electronic properties of the alkyl analogue were maintained while dramatically altering the solubility. Dyes, F-TABTA (8) and its masked derivative F-TABTSi (9), that enable them to be deposited under conventional organic solvent and scCO2 conditions, respectively, were developed. In liquid DSSC devices, the fluoroalkyl dye (F-TABTA, 8) performs slightly better than its alkyl analogue (D21L6, 10), and interestingly, it was found that the former device showed better stability over time.

View Article and Find Full Text PDF

Background: Gliding motility in Plasmodium parasites, the aetiological agents of malaria disease, is mediated by an actomyosin motor anchored in the outer pellicle of the motile cell. Effective motility is dependent on a parasite myosin motor and turnover of dynamic parasite actin filaments. To date, however, the basis for directional motility is not known.

View Article and Find Full Text PDF
Article Synopsis
  • The group's research over the past six years focuses on organic photovoltaics, exploring the development and application of organic materials.
  • The team highlights the importance of understanding how synthetic methods and molecular properties impact the bulk material's characteristics and overall device performance.
  • Insights gained from this work aim to enhance the effectiveness and scalability of organic solar cell technologies.
View Article and Find Full Text PDF

Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties.

View Article and Find Full Text PDF

A high molecular weight donor-acceptor conjugated polymer is synthesized using the Suzuki polycondensation method. Using this polymer, a single-junction bulk-heterojunction solar cell is fabricated giving a power conversion efficiency of 9.4% using a fullerene-modified ZnO interlayer at the cathode contact.

View Article and Find Full Text PDF

Autoimmune diseases are characterized by the presence of autoantibodies in serum of affected patients. The heterogeneity of autoimmune relevant antigens creates a variety of different antibodies, which requires a simultaneous detection mode. For this reason, we developed a tool for parallelized, label-free, optical detection that accomplishes the characterization of multiple antigen-antibody interactions within a single measurement on a timescale of minutes.

View Article and Find Full Text PDF

The photophysical behaviour of a triphenylamine-based organic dye sensitizer (Carbz-PAHTDTT) attached to alumina and titania nanoparticles (labelled Carbz-Al and Carbz-Ti, respectively) is examined in the absence and presence of the chenodeoxycholic acid (CDCA) coadsorber. The experiments are conducted in vacuo by suspending the target dye-sensitized nanoparticles within a quadrupole ion trap, where they are probed with laser radiation to obtain emission spectra and time-resolved excited state decay curves. For Carbz-Al, the dye's emission band is blue-shifted and the excited state lifetime is increased upon the coabsorption of CDCA, effects attributed to reduced dye aggregation.

View Article and Find Full Text PDF

There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve.

View Article and Find Full Text PDF

Self-complementary hydrogen-bonding domains were incorporated as the electron deficient unit in "push-pull", p-type small molecules for organic photovoltaic active layers. Such compounds were found to enhance the fill factor, compared with similar non-self-organized compounds reported in the literature, leading to higher device efficiencies. Evidence is presented that the ability of these molecules to form one-dimensional hydrogen-bonded chains and subsequently exhibit hierarchical self-assembly into nanostructured domains can be correlated with improved device efficiency.

View Article and Find Full Text PDF

Light-initiated, radical and hydrogen-bond induced self-assembly of bis-acetamido-functionalized triarylamines is demonstrated to occur in strongly dipolar "push-pull" molecules. This self-assembly process results in the formation of self-assembled nanostructures which in turn increase the efficiency of organic photovoltaic devices.

View Article and Find Full Text PDF

Unlabelled: A comprehensive analysis of the phosphoinositide interactome has been performed using an ω-amino analogue of phosphatidylinositol 3-phosphate (PI(3)P immobilised onto Affi-10 beads for use as an affinity absorbent for cytosolic, membrane and nuclear extracts from the LIM1215 colonic carcinoma cell line. Affinity/LC/MS/MS experiments allowed the identification of 681 proteins/protein complexes which interact with PI(3)P. Protein domain enrichment analysis identified proteins possessing PI(3)P (e.

View Article and Find Full Text PDF

Antiphospholipid antibodies (aPL) are a relevant serological indicator of antiphospholipid syndrome (APS). A solid-state surface with covalently bound ω-amine-functionalized cardiolipin was established and the binding of β2-glycoprotein I (β2-GPI) was investigated either by use of surface plasmon resonance (SPR) biosensor, by electrically switchable DNA interfaces (switchSENSE) and by scanning tunneling microscopy (STM). STM could clearly visualize the attachment of β2-GPI to the cardiolipin surface.

View Article and Find Full Text PDF

The intramolecular nitrone dipolar cycloaddition of in situ-generated nitrones such as compound 26 has been used for the synthesis of cyclic isoxazolidines 27 and 29. The regioselectivity of the intramolecular cycloaddition depends on the nature of the terminal substituent on the dipolarophile. The influence of the substituent on the regioselectivity of the cycloaddition has been examined using several model systems and two methods of nitrone formation.

View Article and Find Full Text PDF

The factors controlling chemo-, regio-, and stereoselectivity in a cascade of reactions starting from a bis(cyanoalkenyl)oxime and proceeding via nitrone cycloadditions have been unraveled through a series of density functional theory calculations with several different functionals. Both kinetic and thermodynamic control of the reaction cascade are important, depending upon the conditions. Kinetic control was analyzed by the distortion/interaction model and found to be dictated by differences in distortions of the cycloaddends in the transition states.

View Article and Find Full Text PDF

The oxidative cyclodehydrogenation of electron-poor arenes was achieved using DDQ-CF(3)SO(3)H resulting in hexa-peri-hexabenzocoronenes with electron withdrawing Br, F and CF(3) groups. This method will lead to their expansion into a new class of electron transport materials.

View Article and Find Full Text PDF

Quantum mechanical calculations have been used to study the intramolecular additions of hydroxylamines to alkenes and alkynes ("reverse Cope eliminations"). In intermolecular reverse Cope eliminations, alkynes are more reactive than alkenes. However, competition experiments have shown that tethering the hydroxylamine to the alkene or alkyne can reverse the reactivity order from that normally observed.

View Article and Find Full Text PDF

A selection of conjugated polymers, widely studied in organic electronics, was synthesised using continuous flow methodology. As a result of superior heat transfer and reagent control, excellent polymer molecular mass distributions were achieved in significantly reduced reaction times compared to conventional batch reactions.

View Article and Find Full Text PDF

To determine the ability of semiconductors templated by α-helical polypeptides to form higher order structures and the charge carrier properties of the supramolecular assemblies, L-lysine was functionalized with a sexithiophene organic semiconductor unit via iterative Suzuki coupling and the click reaction. The resultant amino acid was incorporated into a homopolypeptide by ring-opening polymerization of an amino acid N-carboxyanhydride. Spectroscopic investigation of the polypeptide revealed that it adopted an α-helical secondary structure in organic solvents that underwent hierarchical self-assembly to form higher order structures.

View Article and Find Full Text PDF