The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFWith the rapid expansion of microplastic research and reliance on semantic descriptors, there is an increasing need for plastic pollution data harmonization. Data standards have been developed but are seldom implemented across research sectors, geographic regions, environmental media, or size classes of plastic pollution. Harmonization of existing data is currently hindered by increasingly large datasets using thousands of different categorical variable descriptors, as well as various metrics used to describe particle abundance and differing size ranges studied across groups.
View Article and Find Full Text PDFAnalysis of microplastics in the environment requires polymer characterization as a confirmation step for suspected microplastic particles found in a sample. Material characterization is costly and can take a long time per particle. When microplastic particle counts are high, many researchers cannot characterize every particle in their sample due to time or monetary constraints.
View Article and Find Full Text PDFCoastal eutrophication is a prevalent threat to the healthy functioning of ecosystems globally. While degraded water quality can be detected by monitoring oxygen, nutrient concentrations, and algal abundance, establishing regulatory guidelines is complicated by a lack of baseline data (e.g.
View Article and Find Full Text PDFPrevious studies have evaluated method performance for quantifying and characterizing microplastics in clean water, but little is known about the efficacy of procedures used to extract microplastics from complex matrices. Here we provided 15 laboratories with samples representing four matrices (i.e.
View Article and Find Full Text PDFMicroscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study.
View Article and Find Full Text PDFEutrophic conditions in estuaries are a globally important stressor to coastal ecosystems and have been suggested as a driver of coastal salt marsh loss. Potential mechanisms in marshes include disturbance caused by macroalgae accumulations, enhanced soil sulfide levels linked to high labile carbon inputs, accelerated decomposition, and declines in belowground biomass that contribute to edge instability, erosion, and slumping. However, results of fertilization studies have been mixed, and it is unclear the extent to which local environmental conditions, such as soil composition and nutrient profiles, help shape the response of salt marshes to nutrient exposure.
View Article and Find Full Text PDFRiver flow is a major conveyance of microplastic (1-5000 μm) pollution from land to marine systems. However, the current approaches to monitoring and modeling fluvial transport of microplastic pollution have primarily relied on sampling the surface of flow and assumptions about microplastic concentration depth profiles to estimate the depth-averaged concentration. The Rouse profile was adapted to show that fluvial transport of microplastic pollution includes all traditional domains of transport (bed load, settling suspended load, and wash load), as well as additional domains specific to low-density materials with rising velocities in water (rising suspended load and surface load).
View Article and Find Full Text PDFTropical urban estuaries are severely understudied. Little is known about the basic biogeochemical cycles and dominant ecosystem processes in these waterbodies, which are often low-lying and heavily modified. The San Juan Bay Estuary (SJBE) in San Juan, Puerto Rico is an example of such a system.
View Article and Find Full Text PDFVolunteer cleanup operations collect large datasets on anthropogenic litter that are seldom analyzed. Here we assess the influence of land use in both near-stream and watershed scale source domains on anthropogenic litter concentration (standing stock, kg km) in riparian zones of Iowa, USA. We utilized riparian litter concentration data on four classes of anthropogenic litter (metal, recyclable, garbage, and tires) from volunteer cleanup operations.
View Article and Find Full Text PDF