Publications by authors named "Andrew Alexander"

Traumatic brain injury (TBI) often involves focal cortical injury and white matter (WM) damage that can be measured shortly after injury. Additionally, slowly evolving WM change can be observed but there is a paucity of research on the duration and spatial pattern of long-term changes several years post-injury. The current study utilized diffusion tensor imaging to identify regional WM changes in 12 TBI patients and nine healthy controls at three time points over a four year period.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ(42) are linked with Alzheimer's disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.

View Article and Find Full Text PDF

Magnetization transfer (MT) imaging quantitatively assesses cerebral white matter disease through its sensitivity to macromolecule-bound protons including those associated with myelin proteins and lipid bilayers. However, traditional MT contrast measured by the MT ratio (MTR) lacks pathologic specificity as demyelination, axon loss, inflammation and edema all impact MTR, directly and/or indirectly through multiple covariances among imaging parameters (particularly MTR with T(1)) and tissue features (e.g.

View Article and Find Full Text PDF

Extracting specific white matter tracts (e.g., uncinate fasciculus) from whole brain tractography has numerous applications in studying individual differences in white matter.

View Article and Find Full Text PDF

The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin signaling issues are linked to brain shrinkage in areas affected by neurodegenerative diseases, and it’s unclear if long-term calorie restriction (CR) can improve this through better insulin signaling or task performance.
  • * A study involving 27 CR and 17 control rhesus monkeys used MRI scans to investigate the relationship between insulin sensitivity, brain volume, and performance on tasks.
  • * Results indicated that CR improved blood sugar regulation, and higher insulin sensitivity correlated with increased gray matter in certain brain regions, suggesting that CR could have a positive impact on brain health and motor task learning.
View Article and Find Full Text PDF

A protocol has been developed for production of intense crystalloluminescence (XTL) from sodium chloride in aqueous solution by selective doping with transition metal salts (Ag(+), Cu(2+), and Dy(3+)). The method was used to record complete, fully dispersed deep UV-visible (200-650 nm) XTL spectra of sodium chloride for the first time. The results show conclusively that the emissions are due to dopant cations in the NaCl lattice, with no evidence for emission directly from NaCl, e.

View Article and Find Full Text PDF

A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains.

View Article and Find Full Text PDF

General linear modeling (GLM) is one of the most commonly used approaches to perform voxel based analyses (VBA) for hypotheses testing in neuroimaging. In this paper we tie support vector machine based regression (SVR) and classical significance testing to provide the benefits of max margin estimation in the GLM setting. Using Welch-Satterthwaite approximations, we compute degrees of freedom (df) of error (also known as residual df) for -SVR.

View Article and Find Full Text PDF

A new time-efficient and accurate technique for simultaneous mapping of T(1) and B(1) is proposed based on a combination of the actual flip angle (FA) imaging and variable FA methods. Variable FA-actual FA imaging utilizes a single actual FA imaging and one or more spoiled gradient-echo acquisitions with a simultaneous nonlinear fitting procedure to yield accurate T(1)/B(1) maps. The advantage of variable FA-actual FA imaging is high accuracy at either short T(1) times or long repetition times in the actual FA imaging sequence.

View Article and Find Full Text PDF

Background: Heightened stress reactivity is associated with hippocampal atrophy, age-related cognitive deficits, and increased risk for Alzheimer's disease. This temperament predisposition may aggravate age-associated brain pathology or be reflective of it. This association may be mediated through repeated activation of the stress hormone axis over time.

View Article and Find Full Text PDF

Non-photochemical laser-induced nucleation (NPLIN) of glacial acetic acid (GAA) is demonstrated. The fraction of samples nucleated depends linearly on peak laser power density at low powers (<100 MW cm(-2)) with a threshold of (9.0 ± 4.

View Article and Find Full Text PDF

Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.

View Article and Find Full Text PDF

The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed.

View Article and Find Full Text PDF

We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting.

View Article and Find Full Text PDF

Given the central role of the amygdala in fear perception and expression and its likely abnormality in affective disorders and autism, there is great demand for a technique to measure differences in neurochemistry of the human amygdala. Unfortunately, it is also a technically complex target for magnetic resonance spectroscopy (MRS) due to a small volume, high field inhomogeneity and a shared boundary with hippocampus, which can undergo opposite changes in response to stress. We attempted to achieve reliable PRESS-localized single-voxel MRS at 3T of the isolated human amygdala by using anatomy to guide voxel size and location.

View Article and Find Full Text PDF

A one-hundred-anode microchannel plate detector is constructed on a 10 cm × 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector.

View Article and Find Full Text PDF

Objective: Memory functioning in children and adolescents ages 5-19 with autism (n = 50) and typically developing controls (n = 36) was assessed using a clinical assessment battery, the Test of Memory and Learning (TOMAL).

Method: Participant groups were statistically comparable in age, nonverbal IQ, handedness, and head circumference, and were administered the TOMAL.

Results: Test performance on the TOMAL demonstrated broad differences in memory functioning in the autism group, across multiple task formats, including verbal and nonverbal, immediate and delayed, attention and concentration, sequential recall, free recall, associative recall, and multiple-trial learning memory.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) is a powerful and noninvasive imaging method for characterizing tissue microstructure and white matter organization in the brain. While it has been applied extensively in research studies of the human brain, DTI studies of non-human primates have been performed only recently. The growing application of DTI in rhesus monkey studies would significantly benefit from a standardized framework to compare findings across different studies.

View Article and Find Full Text PDF

Recent studies in rodents have demonstrated that diffusion imaging is highly sensitive to differences in myelination. These studies suggest that demyelination/dysmyelination cause increases in the radial diffusivity from diffusion tensor imaging (DTI) measurements and decreases in the restricted diffusion component from high b-value diffusion-weighted imaging experiments. In this study, the shaking pup (sh pup), a canine model of dysmyelination, was studied on a clinical MRI scanner using a combination of conventional diffusion tensor imaging and high b-value diffusion-weighted imaging methods.

View Article and Find Full Text PDF

Background And Purpose: To compare few leaf electron collimator (FLEC)-based modulated electron radiotherapy (MERT) to conventional direct electron (DE) and volumetric modulated photon arc therapy (VMAT) for the treatment of tumour bed boost in breast cancer.

Materials And Methods: Fourteen patients with breast cancer treated by lumpectomy and requiring post-operative whole breast radiotherapy with tumour bed boost were planned retrospectively using conventional DE, VMAT and FLEC-based MERT. The planning goal was to deliver 10Gy to at least 95% of the tumour bed volume.

View Article and Find Full Text PDF

DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts.

View Article and Find Full Text PDF

"Is the brain 'wiring' different between groups of populations?" is an increasingly important question with advances in diffusion MRI and abundance of network analytic tools. Recently, automatic, data-driven and computationally efficient framework for extracting brain networks using tractography and epsilon neighborhoods were proposed in the diffusion tensor imaging (DTI) literature [1]. In this paper we propose new extensions to that framework and show potential applications of such epsilon radial networks (ERN) in performing various types of neuroimage analyses.

View Article and Find Full Text PDF

The treatment of brain diseases is complicated by the presence of the blood-brain barrier. This barrier limits the crossing of therapeutic molecules from the blood vessels into the brain. Today, direct intracerebral infusion applying convection-enhanced delivery (CED) is proposed to circumvent this problem and enhance the area of distribution of infusate beyond the parameters of diffusion.

View Article and Find Full Text PDF