To dissect variant-function relationships in the KRAS oncoprotein, we performed deep mutational scanning (DMS) screens for both wild-type and KRAS mutant alleles. We defined the spectrum of oncogenic potential for nearly all possible variants, identifying several novel transforming alleles and elucidating a model to describe the frequency of mutations in human cancer as a function of transforming potential, mutational probability, and tissue-specific mutational signatures. Biochemical and structural analyses of variants identified in a KRAS second-site suppressor DMS screen revealed that attenuation of oncogenic KRAS can be mediated by protein instability and conformational rigidity, resulting in reduced binding affinity to effector proteins, such as RAF and PI3-kinases, or reduced SOS-mediated nucleotide exchange activity.
View Article and Find Full Text PDFPurpose: Transcriptional profiling of pancreatic cancers has defined two main transcriptional subtypes: classical and basal. Initial data suggest shorter survival for patients with basal tumors and differing treatment sensitivity to FOLFIRINOX and gemcitabine plus nab-paclitaxel by transcriptional subtype.
Experimental Design: We examined 8,743 patients with RNA sequencing from pancreatic cancers performed at Caris Life Sciences.
KRAS is the most frequently altered oncogene in pancreatic ductal adenocarcinoma, in which the aberrantly activated RAS signaling pathway plays pleiotropic roles in tumor initiation and maintenance. Nearly four decades after the discovery of the RAS oncoprotein, a multitude of pharmacologic inhibitors are now available that directly target mutant KRAS. This In Focus commentary, published simultaneously with the 2024 AACR Special Conference on Pancreatic Cancer, summarizes the current state of this rapidly changing field, including preclinical data and emerging clinical trends with respect to therapeutic efficacy, mechanisms of resistance, and potential combinations to maximize clinical benefit from this promising class of therapies.
View Article and Find Full Text PDFEsophageal adenocarcinoma (EAC) is a highly lethal cancer of the upper gastrointestinal tract with rising incidence in western populations. To decipher EAC disease progression and therapeutic response, we performed multiomic analyses of a cohort of primary and metastatic EAC tumors, incorporating single-nuclei transcriptomic and chromatin accessibility sequencing, along with spatial profiling. We identified tumor microenvironmental features previously described to associate with therapy response.
View Article and Find Full Text PDFPreclinical studies suggest that simultaneous HER2/VEGF blockade may have cooperative effects in gastroesophageal adenocarcinomas. In a single-arm investigator initiated clinical trial for patients with untreated advanced HER2+ gastroesophageal adenocarcinoma, bevacizumab was added to standard of care capecitabine, oxaliplatin, and trastuzumab in 36 patients (NCT01191697). Primary endpoint was objective response rate and secondary endpoints included safety, duration of response, progression free survival, and overall survival.
View Article and Find Full Text PDFAm Soc Clin Oncol Educ Book
June 2024
Pancreatic ductal adenocarcinoma (PDA) is a challenging disease that presents at an advanced stage and results in many symptoms that negatively influence patients' quality of life and reduce their ability to receive effective treatment. Early implementation of expert multidisciplinary care with nutritional support, exercise, and palliative care for both early-stage and advanced disease promises to maintain or improve the patients' physical, social, and psychological well-being, decrease aggressive interventions at the end of life, and ultimately improve survival. Moreover, advances in treatment strategies in the neoadjuvant and metastatic setting combined with novel therapeutic agents targeting the key drivers of the disease are leading to improvements in the care of patients with pancreatic cancer.
View Article and Find Full Text PDFUnlabelled: RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS.
View Article and Find Full Text PDFRAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 61. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer. Nevertheless, KRAS mutations account for only around 15% of KRAS-mutated cancers, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations.
View Article and Find Full Text PDFBroad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS.
View Article and Find Full Text PDFPurpose: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known.
Experimental Design: Dana-Farber and Foundation Medicine Inc.
Unlabelled: KRASG12C inhibitors, like sotorasib and adagrasib, potently and selectively inhibit KRASG12C through a covalent interaction with the mutant cysteine, driving clinical efficacy in KRASG12C tumors. Because amino acid sequences of the three main RAS isoforms-KRAS, NRAS, and HRAS-are highly similar, we hypothesized that some KRASG12C inhibitors might also target NRASG12C and/or HRASG12C, which are less common but critical oncogenic driver mutations in some tumors. Although some inhibitors, like adagrasib, were highly selective for KRASG12C, others also potently inhibited NRASG12C and/or HRASG12C.
View Article and Find Full Text PDFPurpose: Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC.
Patients And Methods: Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle.
Patients with pancreatic cancer commonly develop weight loss and muscle wasting. Whether adipose tissue and skeletal muscle losses begin before diagnosis and the potential utility of such losses for earlier cancer detection are not well understood. We quantify skeletal muscle and adipose tissue areas from computed tomography (CT) imaging obtained 2 months to 5 years before cancer diagnosis in 714 pancreatic cancer cases and 1748 matched controls.
View Article and Find Full Text PDFBackground & Aims: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans.
Methods: We evaluated the TGFβ-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models.
Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies.
View Article and Find Full Text PDF