Fluidic logic circuits simplify system design for soft robotics by eliminating bulky components while enabling operation in a range of hostile environments that are incompatible with electronics but at the expense of limited computational capabilities and response times on the order of seconds. This paper presents a four-terminal fluidic transistor optimized for fast switching times, reduced component count, low unit cost, and high reproducibility to achieve complex fluidic control circuits while maintaining flow rates of liters per minute. A ring oscillator using three fluidic transistors achieves oscillation frequencies up to a kilohertz with full signal propagation, tolerating billions of cycles without failure.
View Article and Find Full Text PDFPurpose: In this study, we examine three-dimensional (3D) proctoring tools (i.e., semitransparent ghost tools overlaid on the surgeon's field of view) on realistic surgical tasks.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2017
Haptic Jamming, the approach of simultaneously controlling mechanical properties and surface deformation of a tactile display via particle jamming and pneumatics, shows promise as a tangible, shape-changing human-computer interface. Previous research introduced device design and described the force-displacement interactions for individual jamming cells. The work in this article analyzes the shape output capabilities of a multi-cell array.
View Article and Find Full Text PDFThe combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015