Publications by authors named "Andrew A Lacis"

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same.

View Article and Find Full Text PDF

Stratospheric aerosols that are caused by a major volcanic eruption can serve as a valuable test of global climate models, as well as severely complicate tropospheric-aerosol monitoring from space. In either case, it is highly desirable to have accurate global information on the optical thickness, size, and composition of volcanic aerosols. We report sensitivity study results, which reveal the implications of making precise multi-angle photopolarimetric measurements in a 1.

View Article and Find Full Text PDF

Surface remote sensing of aerosol properties provides "ground truth" for satellite and model validation, and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually have different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory.

View Article and Find Full Text PDF

Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e.

View Article and Find Full Text PDF

The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR).

View Article and Find Full Text PDF

Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect.

View Article and Find Full Text PDF

Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S.

View Article and Find Full Text PDF

Analysis of the long-term Global Aerosol Climatology Project data set reveals a likely decrease of the global optical thickness of tropospheric aerosols by as much as 0.03 during the period from 1991 to 2005. This recent trend mirrors the concurrent global increase in solar radiation fluxes at Earth's surface and may have contributed to recent changes in surface climate.

View Article and Find Full Text PDF

We use precise T-matrix calculations for prolate and oblate spheroids, Chebyshev particles, and spheres cut by a plane to study the evolution of Lorenz-Mie morphology-dependent resonances (MDRs) with increasing asphericity of nearly spherical particles in random orientation. We show that, in the case of spheroids and Chebyshev particles, the deformation of a sphere by as little as one hundredth of a wavelength essentially annihilates supernarrow MDRs, whereas significantly larger asphericities are needed to suppress broader resonance features. The MDR position and profile are also affected when the deviation of the particle shape is increased from that of a perfect sphere.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6sk88fdg8c9o97uho3vn9affu9mvogfj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once