The precise control of gene expression is critical in embryonic development. Quantitative assays, such as microarrays and RNA sequencing, provide gene expression levels for a large number of genes, but do not contain spatial information. In contrast, in situ methods, such as in situ hybridization and immunohistochemistry, provide spatial resolution, but poor quantification and can only reveal the expression of one, or very few genes at a time.
View Article and Find Full Text PDFWnt signaling functions repeatedly during embryonic development to induce different but specific responses. What molecular mechanisms ensure that Wnt signaling triggers the correct tissue-specific response in different tissues? Early Xenopus development is an ideal model for addressing this fundamental question, since there is a dramatic change in the response to Wnt signaling at the onset of zygotic gene transcription: Wnt signaling components encoded by maternal mRNA establish the dorsal embryonic axis; zygotically expressed Xwnt-8 causes almost the opposite, by promoting ventral and lateral and restricting dorsal mesodermal development. Although Wnt signaling can function through different signal transduction cascades, the same beta-catenin-dependent, canonical Wnt signal transduction pathway mediates Wnt signaling at both stages of Xenopus development.
View Article and Find Full Text PDF